mirror of https://github.com/JosephKJ/OWOD.git
224 lines
8.3 KiB
Python
224 lines
8.3 KiB
Python
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
|
import logging
|
|
import os
|
|
from fvcore.common.file_io import PathManager
|
|
from fvcore.common.timer import Timer
|
|
|
|
from detectron2.data import DatasetCatalog, MetadataCatalog
|
|
from detectron2.structures import BoxMode
|
|
|
|
from .builtin_meta import _get_coco_instances_meta
|
|
from .lvis_v0_5_categories import LVIS_CATEGORIES as LVIS_V0_5_CATEGORIES
|
|
from .lvis_v1_categories import LVIS_CATEGORIES as LVIS_V1_CATEGORIES
|
|
|
|
"""
|
|
This file contains functions to parse LVIS-format annotations into dicts in the
|
|
"Detectron2 format".
|
|
"""
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
__all__ = ["load_lvis_json", "register_lvis_instances", "get_lvis_instances_meta"]
|
|
|
|
|
|
def register_lvis_instances(name, metadata, json_file, image_root):
|
|
"""
|
|
Register a dataset in LVIS's json annotation format for instance detection and segmentation.
|
|
|
|
Args:
|
|
name (str): a name that identifies the dataset, e.g. "lvis_v0.5_train".
|
|
metadata (dict): extra metadata associated with this dataset. It can be an empty dict.
|
|
json_file (str): path to the json instance annotation file.
|
|
image_root (str or path-like): directory which contains all the images.
|
|
"""
|
|
DatasetCatalog.register(name, lambda: load_lvis_json(json_file, image_root, name))
|
|
MetadataCatalog.get(name).set(
|
|
json_file=json_file, image_root=image_root, evaluator_type="lvis", **metadata
|
|
)
|
|
|
|
|
|
def load_lvis_json(json_file, image_root, dataset_name=None):
|
|
"""
|
|
Load a json file in LVIS's annotation format.
|
|
|
|
Args:
|
|
json_file (str): full path to the LVIS json annotation file.
|
|
image_root (str): the directory where the images in this json file exists.
|
|
dataset_name (str): the name of the dataset (e.g., "lvis_v0.5_train").
|
|
If provided, this function will put "thing_classes" into the metadata
|
|
associated with this dataset.
|
|
|
|
Returns:
|
|
list[dict]: a list of dicts in Detectron2 standard format. (See
|
|
`Using Custom Datasets </tutorials/datasets.html>`_ )
|
|
|
|
Notes:
|
|
1. This function does not read the image files.
|
|
The results do not have the "image" field.
|
|
"""
|
|
from lvis import LVIS
|
|
|
|
json_file = PathManager.get_local_path(json_file)
|
|
|
|
timer = Timer()
|
|
lvis_api = LVIS(json_file)
|
|
if timer.seconds() > 1:
|
|
logger.info("Loading {} takes {:.2f} seconds.".format(json_file, timer.seconds()))
|
|
|
|
if dataset_name is not None:
|
|
meta = get_lvis_instances_meta(dataset_name)
|
|
MetadataCatalog.get(dataset_name).set(**meta)
|
|
|
|
# sort indices for reproducible results
|
|
img_ids = sorted(lvis_api.imgs.keys())
|
|
# imgs is a list of dicts, each looks something like:
|
|
# {'license': 4,
|
|
# 'url': 'http://farm6.staticflickr.com/5454/9413846304_881d5e5c3b_z.jpg',
|
|
# 'file_name': 'COCO_val2014_000000001268.jpg',
|
|
# 'height': 427,
|
|
# 'width': 640,
|
|
# 'date_captured': '2013-11-17 05:57:24',
|
|
# 'id': 1268}
|
|
imgs = lvis_api.load_imgs(img_ids)
|
|
# anns is a list[list[dict]], where each dict is an annotation
|
|
# record for an object. The inner list enumerates the objects in an image
|
|
# and the outer list enumerates over images. Example of anns[0]:
|
|
# [{'segmentation': [[192.81,
|
|
# 247.09,
|
|
# ...
|
|
# 219.03,
|
|
# 249.06]],
|
|
# 'area': 1035.749,
|
|
# 'image_id': 1268,
|
|
# 'bbox': [192.81, 224.8, 74.73, 33.43],
|
|
# 'category_id': 16,
|
|
# 'id': 42986},
|
|
# ...]
|
|
anns = [lvis_api.img_ann_map[img_id] for img_id in img_ids]
|
|
|
|
# Sanity check that each annotation has a unique id
|
|
ann_ids = [ann["id"] for anns_per_image in anns for ann in anns_per_image]
|
|
assert len(set(ann_ids)) == len(ann_ids), "Annotation ids in '{}' are not unique".format(
|
|
json_file
|
|
)
|
|
|
|
imgs_anns = list(zip(imgs, anns))
|
|
|
|
logger.info("Loaded {} images in the LVIS format from {}".format(len(imgs_anns), json_file))
|
|
|
|
def get_file_name(img_root, img_dict):
|
|
# Determine the path including the split folder ("train2017", "val2017", "test2017") from
|
|
# the coco_url field. Example:
|
|
# 'coco_url': 'http://images.cocodataset.org/train2017/000000155379.jpg'
|
|
split_folder, file_name = img_dict["coco_url"].split("/")[-2:]
|
|
return os.path.join(img_root + split_folder, file_name)
|
|
|
|
dataset_dicts = []
|
|
|
|
for (img_dict, anno_dict_list) in imgs_anns:
|
|
record = {}
|
|
record["file_name"] = get_file_name(image_root, img_dict)
|
|
record["height"] = img_dict["height"]
|
|
record["width"] = img_dict["width"]
|
|
record["not_exhaustive_category_ids"] = img_dict.get("not_exhaustive_category_ids", [])
|
|
record["neg_category_ids"] = img_dict.get("neg_category_ids", [])
|
|
image_id = record["image_id"] = img_dict["id"]
|
|
|
|
objs = []
|
|
for anno in anno_dict_list:
|
|
# Check that the image_id in this annotation is the same as
|
|
# the image_id we're looking at.
|
|
# This fails only when the data parsing logic or the annotation file is buggy.
|
|
assert anno["image_id"] == image_id
|
|
obj = {"bbox": anno["bbox"], "bbox_mode": BoxMode.XYWH_ABS}
|
|
obj["category_id"] = anno["category_id"] - 1 # Convert 1-indexed to 0-indexed
|
|
segm = anno["segmentation"] # list[list[float]]
|
|
# filter out invalid polygons (< 3 points)
|
|
valid_segm = [poly for poly in segm if len(poly) % 2 == 0 and len(poly) >= 6]
|
|
assert len(segm) == len(
|
|
valid_segm
|
|
), "Annotation contains an invalid polygon with < 3 points"
|
|
assert len(segm) > 0
|
|
obj["segmentation"] = segm
|
|
objs.append(obj)
|
|
record["annotations"] = objs
|
|
dataset_dicts.append(record)
|
|
|
|
return dataset_dicts
|
|
|
|
|
|
def get_lvis_instances_meta(dataset_name):
|
|
"""
|
|
Load LVIS metadata.
|
|
|
|
Args:
|
|
dataset_name (str): LVIS dataset name without the split name (e.g., "lvis_v0.5").
|
|
|
|
Returns:
|
|
dict: LVIS metadata with keys: thing_classes
|
|
"""
|
|
if "cocofied" in dataset_name:
|
|
return _get_coco_instances_meta()
|
|
if "v0.5" in dataset_name:
|
|
return _get_lvis_instances_meta_v0_5()
|
|
elif "v1" in dataset_name:
|
|
return _get_lvis_instances_meta_v1()
|
|
raise ValueError("No built-in metadata for dataset {}".format(dataset_name))
|
|
|
|
|
|
def _get_lvis_instances_meta_v0_5():
|
|
assert len(LVIS_V0_5_CATEGORIES) == 1230
|
|
cat_ids = [k["id"] for k in LVIS_V0_5_CATEGORIES]
|
|
assert min(cat_ids) == 1 and max(cat_ids) == len(
|
|
cat_ids
|
|
), "Category ids are not in [1, #categories], as expected"
|
|
# Ensure that the category list is sorted by id
|
|
lvis_categories = sorted(LVIS_V0_5_CATEGORIES, key=lambda x: x["id"])
|
|
thing_classes = [k["synonyms"][0] for k in lvis_categories]
|
|
meta = {"thing_classes": thing_classes}
|
|
return meta
|
|
|
|
|
|
def _get_lvis_instances_meta_v1():
|
|
assert len(LVIS_V1_CATEGORIES) == 1203
|
|
cat_ids = [k["id"] for k in LVIS_V1_CATEGORIES]
|
|
assert min(cat_ids) == 1 and max(cat_ids) == len(
|
|
cat_ids
|
|
), "Category ids are not in [1, #categories], as expected"
|
|
# Ensure that the category list is sorted by id
|
|
lvis_categories = sorted(LVIS_V1_CATEGORIES, key=lambda x: x["id"])
|
|
thing_classes = [k["synonyms"][0] for k in lvis_categories]
|
|
meta = {"thing_classes": thing_classes}
|
|
return meta
|
|
|
|
|
|
if __name__ == "__main__":
|
|
"""
|
|
Test the LVIS json dataset loader.
|
|
|
|
Usage:
|
|
python -m detectron2.data.datasets.lvis \
|
|
path/to/json path/to/image_root dataset_name vis_limit
|
|
"""
|
|
import sys
|
|
import numpy as np
|
|
from detectron2.utils.logger import setup_logger
|
|
from PIL import Image
|
|
import detectron2.data.datasets # noqa # add pre-defined metadata
|
|
from detectron2.utils.visualizer import Visualizer
|
|
|
|
logger = setup_logger(name=__name__)
|
|
meta = MetadataCatalog.get(sys.argv[3])
|
|
|
|
dicts = load_lvis_json(sys.argv[1], sys.argv[2], sys.argv[3])
|
|
logger.info("Done loading {} samples.".format(len(dicts)))
|
|
|
|
dirname = "lvis-data-vis"
|
|
os.makedirs(dirname, exist_ok=True)
|
|
for d in dicts[: int(sys.argv[4])]:
|
|
img = np.array(Image.open(d["file_name"]))
|
|
visualizer = Visualizer(img, metadata=meta)
|
|
vis = visualizer.draw_dataset_dict(d)
|
|
fpath = os.path.join(dirname, os.path.basename(d["file_name"]))
|
|
vis.save(fpath)
|