mirror of https://github.com/JosephKJ/OWOD.git
117 lines
4.1 KiB
Python
117 lines
4.1 KiB
Python
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
|
import math
|
|
from bisect import bisect_right
|
|
from typing import List
|
|
import torch
|
|
|
|
# NOTE: PyTorch's LR scheduler interface uses names that assume the LR changes
|
|
# only on epoch boundaries. We typically use iteration based schedules instead.
|
|
# As a result, "epoch" (e.g., as in self.last_epoch) should be understood to mean
|
|
# "iteration" instead.
|
|
|
|
# FIXME: ideally this would be achieved with a CombinedLRScheduler, separating
|
|
# MultiStepLR with WarmupLR but the current LRScheduler design doesn't allow it.
|
|
|
|
|
|
class WarmupMultiStepLR(torch.optim.lr_scheduler._LRScheduler):
|
|
def __init__(
|
|
self,
|
|
optimizer: torch.optim.Optimizer,
|
|
milestones: List[int],
|
|
gamma: float = 0.1,
|
|
warmup_factor: float = 0.001,
|
|
warmup_iters: int = 1000,
|
|
warmup_method: str = "linear",
|
|
last_epoch: int = -1,
|
|
):
|
|
if not list(milestones) == sorted(milestones):
|
|
raise ValueError(
|
|
"Milestones should be a list of" " increasing integers. Got {}", milestones
|
|
)
|
|
self.milestones = milestones
|
|
self.gamma = gamma
|
|
self.warmup_factor = warmup_factor
|
|
self.warmup_iters = warmup_iters
|
|
self.warmup_method = warmup_method
|
|
super().__init__(optimizer, last_epoch)
|
|
|
|
def get_lr(self) -> List[float]:
|
|
warmup_factor = _get_warmup_factor_at_iter(
|
|
self.warmup_method, self.last_epoch, self.warmup_iters, self.warmup_factor
|
|
)
|
|
return [
|
|
base_lr * warmup_factor * self.gamma ** bisect_right(self.milestones, self.last_epoch)
|
|
for base_lr in self.base_lrs
|
|
]
|
|
|
|
def _compute_values(self) -> List[float]:
|
|
# The new interface
|
|
return self.get_lr()
|
|
|
|
|
|
class WarmupCosineLR(torch.optim.lr_scheduler._LRScheduler):
|
|
def __init__(
|
|
self,
|
|
optimizer: torch.optim.Optimizer,
|
|
max_iters: int,
|
|
warmup_factor: float = 0.001,
|
|
warmup_iters: int = 1000,
|
|
warmup_method: str = "linear",
|
|
last_epoch: int = -1,
|
|
):
|
|
self.max_iters = max_iters
|
|
self.warmup_factor = warmup_factor
|
|
self.warmup_iters = warmup_iters
|
|
self.warmup_method = warmup_method
|
|
super().__init__(optimizer, last_epoch)
|
|
|
|
def get_lr(self) -> List[float]:
|
|
warmup_factor = _get_warmup_factor_at_iter(
|
|
self.warmup_method, self.last_epoch, self.warmup_iters, self.warmup_factor
|
|
)
|
|
# Different definitions of half-cosine with warmup are possible. For
|
|
# simplicity we multiply the standard half-cosine schedule by the warmup
|
|
# factor. An alternative is to start the period of the cosine at warmup_iters
|
|
# instead of at 0. In the case that warmup_iters << max_iters the two are
|
|
# very close to each other.
|
|
return [
|
|
base_lr
|
|
* warmup_factor
|
|
* 0.5
|
|
* (1.0 + math.cos(math.pi * self.last_epoch / self.max_iters))
|
|
for base_lr in self.base_lrs
|
|
]
|
|
|
|
def _compute_values(self) -> List[float]:
|
|
# The new interface
|
|
return self.get_lr()
|
|
|
|
|
|
def _get_warmup_factor_at_iter(
|
|
method: str, iter: int, warmup_iters: int, warmup_factor: float
|
|
) -> float:
|
|
"""
|
|
Return the learning rate warmup factor at a specific iteration.
|
|
See :paper:`ImageNet in 1h` for more details.
|
|
|
|
Args:
|
|
method (str): warmup method; either "constant" or "linear".
|
|
iter (int): iteration at which to calculate the warmup factor.
|
|
warmup_iters (int): the number of warmup iterations.
|
|
warmup_factor (float): the base warmup factor (the meaning changes according
|
|
to the method used).
|
|
|
|
Returns:
|
|
float: the effective warmup factor at the given iteration.
|
|
"""
|
|
if iter >= warmup_iters:
|
|
return 1.0
|
|
|
|
if method == "constant":
|
|
return warmup_factor
|
|
elif method == "linear":
|
|
alpha = iter / warmup_iters
|
|
return warmup_factor * (1 - alpha) + alpha
|
|
else:
|
|
raise ValueError("Unknown warmup method: {}".format(method))
|