mirror of https://github.com/JosephKJ/OWOD.git
478 lines
20 KiB
Python
478 lines
20 KiB
Python
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
|
import contextlib
|
|
import datetime
|
|
import io
|
|
import json
|
|
import logging
|
|
import numpy as np
|
|
import os
|
|
import shutil
|
|
import pycocotools.mask as mask_util
|
|
from fvcore.common.file_io import PathManager, file_lock
|
|
from fvcore.common.timer import Timer
|
|
from PIL import Image
|
|
|
|
from detectron2.structures import Boxes, BoxMode, PolygonMasks
|
|
|
|
from .. import DatasetCatalog, MetadataCatalog
|
|
|
|
"""
|
|
This file contains functions to parse COCO-format annotations into dicts in "Detectron2 format".
|
|
"""
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
__all__ = ["load_coco_json", "load_sem_seg", "convert_to_coco_json"]
|
|
|
|
|
|
def load_coco_json(json_file, image_root, dataset_name=None, extra_annotation_keys=None):
|
|
"""
|
|
Load a json file with COCO's instances annotation format.
|
|
Currently supports instance detection, instance segmentation,
|
|
and person keypoints annotations.
|
|
|
|
Args:
|
|
json_file (str): full path to the json file in COCO instances annotation format.
|
|
image_root (str or path-like): the directory where the images in this json file exists.
|
|
dataset_name (str): the name of the dataset (e.g., coco_2017_train).
|
|
If provided, this function will also put "thing_classes" into
|
|
the metadata associated with this dataset.
|
|
extra_annotation_keys (list[str]): list of per-annotation keys that should also be
|
|
loaded into the dataset dict (besides "iscrowd", "bbox", "keypoints",
|
|
"category_id", "segmentation"). The values for these keys will be returned as-is.
|
|
For example, the densepose annotations are loaded in this way.
|
|
|
|
Returns:
|
|
list[dict]: a list of dicts in Detectron2 standard dataset dicts format. (See
|
|
`Using Custom Datasets </tutorials/datasets.html>`_ )
|
|
|
|
Notes:
|
|
1. This function does not read the image files.
|
|
The results do not have the "image" field.
|
|
"""
|
|
from pycocotools.coco import COCO
|
|
|
|
timer = Timer()
|
|
json_file = PathManager.get_local_path(json_file)
|
|
with contextlib.redirect_stdout(io.StringIO()):
|
|
coco_api = COCO(json_file)
|
|
if timer.seconds() > 1:
|
|
logger.info("Loading {} takes {:.2f} seconds.".format(json_file, timer.seconds()))
|
|
|
|
id_map = None
|
|
if dataset_name is not None:
|
|
meta = MetadataCatalog.get(dataset_name)
|
|
cat_ids = sorted(coco_api.getCatIds())
|
|
cats = coco_api.loadCats(cat_ids)
|
|
# The categories in a custom json file may not be sorted.
|
|
thing_classes = [c["name"] for c in sorted(cats, key=lambda x: x["id"])]
|
|
meta.thing_classes = thing_classes
|
|
|
|
# In COCO, certain category ids are artificially removed,
|
|
# and by convention they are always ignored.
|
|
# We deal with COCO's id issue and translate
|
|
# the category ids to contiguous ids in [0, 80).
|
|
|
|
# It works by looking at the "categories" field in the json, therefore
|
|
# if users' own json also have incontiguous ids, we'll
|
|
# apply this mapping as well but print a warning.
|
|
if not (min(cat_ids) == 1 and max(cat_ids) == len(cat_ids)):
|
|
if "coco" not in dataset_name:
|
|
logger.warning(
|
|
"""
|
|
Category ids in annotations are not in [1, #categories]! We'll apply a mapping for you.
|
|
"""
|
|
)
|
|
id_map = {v: i for i, v in enumerate(cat_ids)}
|
|
meta.thing_dataset_id_to_contiguous_id = id_map
|
|
|
|
# sort indices for reproducible results
|
|
img_ids = sorted(coco_api.imgs.keys())
|
|
# imgs is a list of dicts, each looks something like:
|
|
# {'license': 4,
|
|
# 'url': 'http://farm6.staticflickr.com/5454/9413846304_881d5e5c3b_z.jpg',
|
|
# 'file_name': 'COCO_val2014_000000001268.jpg',
|
|
# 'height': 427,
|
|
# 'width': 640,
|
|
# 'date_captured': '2013-11-17 05:57:24',
|
|
# 'id': 1268}
|
|
imgs = coco_api.loadImgs(img_ids)
|
|
# anns is a list[list[dict]], where each dict is an annotation
|
|
# record for an object. The inner list enumerates the objects in an image
|
|
# and the outer list enumerates over images. Example of anns[0]:
|
|
# [{'segmentation': [[192.81,
|
|
# 247.09,
|
|
# ...
|
|
# 219.03,
|
|
# 249.06]],
|
|
# 'area': 1035.749,
|
|
# 'iscrowd': 0,
|
|
# 'image_id': 1268,
|
|
# 'bbox': [192.81, 224.8, 74.73, 33.43],
|
|
# 'category_id': 16,
|
|
# 'id': 42986},
|
|
# ...]
|
|
anns = [coco_api.imgToAnns[img_id] for img_id in img_ids]
|
|
total_num_valid_anns = sum([len(x) for x in anns])
|
|
total_num_anns = len(coco_api.anns)
|
|
if total_num_valid_anns < total_num_anns:
|
|
logger.warning(
|
|
f"{json_file} contains {total_num_anns} annotations, but only "
|
|
f"{total_num_valid_anns} of them match to images in the file."
|
|
)
|
|
|
|
if "minival" not in json_file:
|
|
# The popular valminusminival & minival annotations for COCO2014 contain this bug.
|
|
# However the ratio of buggy annotations there is tiny and does not affect accuracy.
|
|
# Therefore we explicitly white-list them.
|
|
ann_ids = [ann["id"] for anns_per_image in anns for ann in anns_per_image]
|
|
assert len(set(ann_ids)) == len(ann_ids), "Annotation ids in '{}' are not unique!".format(
|
|
json_file
|
|
)
|
|
|
|
imgs_anns = list(zip(imgs, anns))
|
|
logger.info("Loaded {} images in COCO format from {}".format(len(imgs_anns), json_file))
|
|
|
|
dataset_dicts = []
|
|
|
|
ann_keys = ["iscrowd", "bbox", "keypoints", "category_id"] + (extra_annotation_keys or [])
|
|
|
|
num_instances_without_valid_segmentation = 0
|
|
|
|
for (img_dict, anno_dict_list) in imgs_anns:
|
|
record = {}
|
|
record["file_name"] = os.path.join(image_root, img_dict["file_name"])
|
|
record["height"] = img_dict["height"]
|
|
record["width"] = img_dict["width"]
|
|
image_id = record["image_id"] = img_dict["id"]
|
|
|
|
objs = []
|
|
for anno in anno_dict_list:
|
|
# Check that the image_id in this annotation is the same as
|
|
# the image_id we're looking at.
|
|
# This fails only when the data parsing logic or the annotation file is buggy.
|
|
|
|
# The original COCO valminusminival2014 & minival2014 annotation files
|
|
# actually contains bugs that, together with certain ways of using COCO API,
|
|
# can trigger this assertion.
|
|
assert anno["image_id"] == image_id
|
|
|
|
assert anno.get("ignore", 0) == 0, '"ignore" in COCO json file is not supported.'
|
|
|
|
obj = {key: anno[key] for key in ann_keys if key in anno}
|
|
|
|
segm = anno.get("segmentation", None)
|
|
if segm: # either list[list[float]] or dict(RLE)
|
|
if isinstance(segm, dict):
|
|
if isinstance(segm["counts"], list):
|
|
# convert to compressed RLE
|
|
segm = mask_util.frPyObjects(segm, *segm["size"])
|
|
else:
|
|
# filter out invalid polygons (< 3 points)
|
|
segm = [poly for poly in segm if len(poly) % 2 == 0 and len(poly) >= 6]
|
|
if len(segm) == 0:
|
|
num_instances_without_valid_segmentation += 1
|
|
continue # ignore this instance
|
|
obj["segmentation"] = segm
|
|
|
|
keypts = anno.get("keypoints", None)
|
|
if keypts: # list[int]
|
|
for idx, v in enumerate(keypts):
|
|
if idx % 3 != 2:
|
|
# COCO's segmentation coordinates are floating points in [0, H or W],
|
|
# but keypoint coordinates are integers in [0, H-1 or W-1]
|
|
# Therefore we assume the coordinates are "pixel indices" and
|
|
# add 0.5 to convert to floating point coordinates.
|
|
keypts[idx] = v + 0.5
|
|
obj["keypoints"] = keypts
|
|
|
|
obj["bbox_mode"] = BoxMode.XYWH_ABS
|
|
if id_map:
|
|
obj["category_id"] = id_map[obj["category_id"]]
|
|
objs.append(obj)
|
|
record["annotations"] = objs
|
|
dataset_dicts.append(record)
|
|
|
|
if num_instances_without_valid_segmentation > 0:
|
|
logger.warning(
|
|
"Filtered out {} instances without valid segmentation. ".format(
|
|
num_instances_without_valid_segmentation
|
|
)
|
|
+ "There might be issues in your dataset generation process. "
|
|
"A valid polygon should be a list[float] with even length >= 6."
|
|
)
|
|
return dataset_dicts
|
|
|
|
|
|
def load_sem_seg(gt_root, image_root, gt_ext="png", image_ext="jpg"):
|
|
"""
|
|
Load semantic segmentation datasets. All files under "gt_root" with "gt_ext" extension are
|
|
treated as ground truth annotations and all files under "image_root" with "image_ext" extension
|
|
as input images. Ground truth and input images are matched using file paths relative to
|
|
"gt_root" and "image_root" respectively without taking into account file extensions.
|
|
This works for COCO as well as some other datasets.
|
|
|
|
Args:
|
|
gt_root (str): full path to ground truth semantic segmentation files. Semantic segmentation
|
|
annotations are stored as images with integer values in pixels that represent
|
|
corresponding semantic labels.
|
|
image_root (str): the directory where the input images are.
|
|
gt_ext (str): file extension for ground truth annotations.
|
|
image_ext (str): file extension for input images.
|
|
|
|
Returns:
|
|
list[dict]:
|
|
a list of dicts in detectron2 standard format without instance-level
|
|
annotation.
|
|
|
|
Notes:
|
|
1. This function does not read the image and ground truth files.
|
|
The results do not have the "image" and "sem_seg" fields.
|
|
"""
|
|
|
|
# We match input images with ground truth based on their relative filepaths (without file
|
|
# extensions) starting from 'image_root' and 'gt_root' respectively.
|
|
def file2id(folder_path, file_path):
|
|
# extract relative path starting from `folder_path`
|
|
image_id = os.path.normpath(os.path.relpath(file_path, start=folder_path))
|
|
# remove file extension
|
|
image_id = os.path.splitext(image_id)[0]
|
|
return image_id
|
|
|
|
input_files = sorted(
|
|
(os.path.join(image_root, f) for f in PathManager.ls(image_root) if f.endswith(image_ext)),
|
|
key=lambda file_path: file2id(image_root, file_path),
|
|
)
|
|
gt_files = sorted(
|
|
(os.path.join(gt_root, f) for f in PathManager.ls(gt_root) if f.endswith(gt_ext)),
|
|
key=lambda file_path: file2id(gt_root, file_path),
|
|
)
|
|
|
|
assert len(gt_files) > 0, "No annotations found in {}.".format(gt_root)
|
|
|
|
# Use the intersection, so that val2017_100 annotations can run smoothly with val2017 images
|
|
if len(input_files) != len(gt_files):
|
|
logger.warn(
|
|
"Directory {} and {} has {} and {} files, respectively.".format(
|
|
image_root, gt_root, len(input_files), len(gt_files)
|
|
)
|
|
)
|
|
input_basenames = [os.path.basename(f)[: -len(image_ext)] for f in input_files]
|
|
gt_basenames = [os.path.basename(f)[: -len(gt_ext)] for f in gt_files]
|
|
intersect = list(set(input_basenames) & set(gt_basenames))
|
|
# sort, otherwise each worker may obtain a list[dict] in different order
|
|
intersect = sorted(intersect)
|
|
logger.warn("Will use their intersection of {} files.".format(len(intersect)))
|
|
input_files = [os.path.join(image_root, f + image_ext) for f in intersect]
|
|
gt_files = [os.path.join(gt_root, f + gt_ext) for f in intersect]
|
|
|
|
logger.info(
|
|
"Loaded {} images with semantic segmentation from {}".format(len(input_files), image_root)
|
|
)
|
|
|
|
dataset_dicts = []
|
|
for (img_path, gt_path) in zip(input_files, gt_files):
|
|
record = {}
|
|
record["file_name"] = img_path
|
|
record["sem_seg_file_name"] = gt_path
|
|
dataset_dicts.append(record)
|
|
|
|
return dataset_dicts
|
|
|
|
|
|
def convert_to_coco_dict(dataset_name):
|
|
"""
|
|
Convert an instance detection/segmentation or keypoint detection dataset
|
|
in detectron2's standard format into COCO json format.
|
|
|
|
Generic dataset description can be found here:
|
|
https://detectron2.readthedocs.io/tutorials/datasets.html#register-a-dataset
|
|
|
|
COCO data format description can be found here:
|
|
http://cocodataset.org/#format-data
|
|
|
|
Args:
|
|
dataset_name (str):
|
|
name of the source dataset
|
|
Must be registered in DatastCatalog and in detectron2's standard format.
|
|
Must have corresponding metadata "thing_classes"
|
|
Returns:
|
|
coco_dict: serializable dict in COCO json format
|
|
"""
|
|
|
|
dataset_dicts = DatasetCatalog.get(dataset_name)
|
|
metadata = MetadataCatalog.get(dataset_name)
|
|
|
|
# unmap the category mapping ids for COCO
|
|
if hasattr(metadata, "thing_dataset_id_to_contiguous_id"):
|
|
reverse_id_mapping = {v: k for k, v in metadata.thing_dataset_id_to_contiguous_id.items()}
|
|
reverse_id_mapper = lambda contiguous_id: reverse_id_mapping[contiguous_id] # noqa
|
|
else:
|
|
reverse_id_mapper = lambda contiguous_id: contiguous_id # noqa
|
|
|
|
categories = [
|
|
{"id": reverse_id_mapper(id), "name": name}
|
|
for id, name in enumerate(metadata.thing_classes)
|
|
]
|
|
|
|
logger.info("Converting dataset dicts into COCO format")
|
|
coco_images = []
|
|
coco_annotations = []
|
|
|
|
for image_id, image_dict in enumerate(dataset_dicts):
|
|
coco_image = {
|
|
"id": image_dict.get("image_id", image_id),
|
|
"width": int(image_dict["width"]),
|
|
"height": int(image_dict["height"]),
|
|
"file_name": str(image_dict["file_name"]),
|
|
}
|
|
coco_images.append(coco_image)
|
|
|
|
anns_per_image = image_dict.get("annotations", [])
|
|
for annotation in anns_per_image:
|
|
# create a new dict with only COCO fields
|
|
coco_annotation = {}
|
|
|
|
# COCO requirement: XYWH box format
|
|
bbox = annotation["bbox"]
|
|
bbox_mode = annotation["bbox_mode"]
|
|
bbox = BoxMode.convert(bbox, bbox_mode, BoxMode.XYWH_ABS)
|
|
|
|
# COCO requirement: instance area
|
|
if "segmentation" in annotation:
|
|
# Computing areas for instances by counting the pixels
|
|
segmentation = annotation["segmentation"]
|
|
# TODO: check segmentation type: RLE, BinaryMask or Polygon
|
|
if isinstance(segmentation, list):
|
|
polygons = PolygonMasks([segmentation])
|
|
area = polygons.area()[0].item()
|
|
elif isinstance(segmentation, dict): # RLE
|
|
area = mask_util.area(segmentation).item()
|
|
else:
|
|
raise TypeError(f"Unknown segmentation type {type(segmentation)}!")
|
|
else:
|
|
# Computing areas using bounding boxes
|
|
bbox_xy = BoxMode.convert(bbox, BoxMode.XYWH_ABS, BoxMode.XYXY_ABS)
|
|
area = Boxes([bbox_xy]).area()[0].item()
|
|
|
|
if "keypoints" in annotation:
|
|
keypoints = annotation["keypoints"] # list[int]
|
|
for idx, v in enumerate(keypoints):
|
|
if idx % 3 != 2:
|
|
# COCO's segmentation coordinates are floating points in [0, H or W],
|
|
# but keypoint coordinates are integers in [0, H-1 or W-1]
|
|
# For COCO format consistency we substract 0.5
|
|
# https://github.com/facebookresearch/detectron2/pull/175#issuecomment-551202163
|
|
keypoints[idx] = v - 0.5
|
|
if "num_keypoints" in annotation:
|
|
num_keypoints = annotation["num_keypoints"]
|
|
else:
|
|
num_keypoints = sum(kp > 0 for kp in keypoints[2::3])
|
|
|
|
# COCO requirement:
|
|
# linking annotations to images
|
|
# "id" field must start with 1
|
|
coco_annotation["id"] = len(coco_annotations) + 1
|
|
coco_annotation["image_id"] = coco_image["id"]
|
|
coco_annotation["bbox"] = [round(float(x), 3) for x in bbox]
|
|
coco_annotation["area"] = float(area)
|
|
coco_annotation["iscrowd"] = int(annotation.get("iscrowd", 0))
|
|
coco_annotation["category_id"] = int(reverse_id_mapper(annotation["category_id"]))
|
|
|
|
# Add optional fields
|
|
if "keypoints" in annotation:
|
|
coco_annotation["keypoints"] = keypoints
|
|
coco_annotation["num_keypoints"] = num_keypoints
|
|
|
|
if "segmentation" in annotation:
|
|
seg = coco_annotation["segmentation"] = annotation["segmentation"]
|
|
if isinstance(seg, dict): # RLE
|
|
counts = seg["counts"]
|
|
if not isinstance(counts, str):
|
|
# make it json-serializable
|
|
seg["counts"] = counts.decode("ascii")
|
|
|
|
coco_annotations.append(coco_annotation)
|
|
|
|
logger.info(
|
|
"Conversion finished, "
|
|
f"#images: {len(coco_images)}, #annotations: {len(coco_annotations)}"
|
|
)
|
|
|
|
info = {
|
|
"date_created": str(datetime.datetime.now()),
|
|
"description": "Automatically generated COCO json file for Detectron2.",
|
|
}
|
|
coco_dict = {"info": info, "images": coco_images, "categories": categories, "licenses": None}
|
|
if len(coco_annotations) > 0:
|
|
coco_dict["annotations"] = coco_annotations
|
|
return coco_dict
|
|
|
|
|
|
def convert_to_coco_json(dataset_name, output_file, allow_cached=True):
|
|
"""
|
|
Converts dataset into COCO format and saves it to a json file.
|
|
dataset_name must be registered in DatasetCatalog and in detectron2's standard format.
|
|
|
|
Args:
|
|
dataset_name:
|
|
reference from the config file to the catalogs
|
|
must be registered in DatasetCatalog and in detectron2's standard format
|
|
output_file: path of json file that will be saved to
|
|
allow_cached: if json file is already present then skip conversion
|
|
"""
|
|
|
|
# TODO: The dataset or the conversion script *may* change,
|
|
# a checksum would be useful for validating the cached data
|
|
|
|
PathManager.mkdirs(os.path.dirname(output_file))
|
|
with file_lock(output_file):
|
|
if PathManager.exists(output_file) and allow_cached:
|
|
logger.warning(
|
|
f"Using previously cached COCO format annotations at '{output_file}'. "
|
|
"You need to clear the cache file if your dataset has been modified."
|
|
)
|
|
else:
|
|
logger.info(f"Converting annotations of dataset '{dataset_name}' to COCO format ...)")
|
|
coco_dict = convert_to_coco_dict(dataset_name)
|
|
|
|
logger.info(f"Caching COCO format annotations at '{output_file}' ...")
|
|
tmp_file = output_file + ".tmp"
|
|
with PathManager.open(tmp_file, "w") as f:
|
|
json.dump(coco_dict, f)
|
|
shutil.move(tmp_file, output_file)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
"""
|
|
Test the COCO json dataset loader.
|
|
|
|
Usage:
|
|
python -m detectron2.data.datasets.coco \
|
|
path/to/json path/to/image_root dataset_name
|
|
|
|
"dataset_name" can be "coco_2014_minival_100", or other
|
|
pre-registered ones
|
|
"""
|
|
from detectron2.utils.logger import setup_logger
|
|
from detectron2.utils.visualizer import Visualizer
|
|
import detectron2.data.datasets # noqa # add pre-defined metadata
|
|
import sys
|
|
|
|
logger = setup_logger(name=__name__)
|
|
assert sys.argv[3] in DatasetCatalog.list()
|
|
meta = MetadataCatalog.get(sys.argv[3])
|
|
|
|
dicts = load_coco_json(sys.argv[1], sys.argv[2], sys.argv[3])
|
|
logger.info("Done loading {} samples.".format(len(dicts)))
|
|
|
|
dirname = "coco-data-vis"
|
|
os.makedirs(dirname, exist_ok=True)
|
|
for d in dicts:
|
|
img = np.array(Image.open(d["file_name"]))
|
|
visualizer = Visualizer(img, metadata=meta)
|
|
vis = visualizer.draw_dataset_dict(d)
|
|
fpath = os.path.join(dirname, os.path.basename(d["file_name"]))
|
|
vis.save(fpath)
|