2022-05-30 22:27:19 +08:00
|
|
|
|
# Linux GPU/CPU C++ 推理功能测试
|
2021-12-01 19:39:13 +08:00
|
|
|
|
|
2022-05-30 22:27:19 +08:00
|
|
|
|
Linux GPU/CPU C++ 推理功能测试的主程序为`test_inference_cpp.sh`,可以测试基于C++预测引擎的推理功能。
|
2021-12-01 19:39:13 +08:00
|
|
|
|
|
|
|
|
|
## 1. 测试结论汇总
|
|
|
|
|
|
2022-05-30 22:27:19 +08:00
|
|
|
|
- 推理相关:
|
2021-12-01 19:39:13 +08:00
|
|
|
|
|
2022-06-24 23:49:15 +08:00
|
|
|
|
| 算法名称 | 模型名称 | device_CPU | device_GPU |
|
|
|
|
|
| :-------------: | :------------------------------------------: | :--------: | :--------: |
|
|
|
|
|
| MobileNetV3 | MobileNetV3_large_x1_0 | 支持 | 支持 |
|
|
|
|
|
| MobileNetV3 | MobileNetV3_large_x1_0_KL | 支持 | 支持 |
|
|
|
|
|
| MobileNetV3 | MobileNetV3_large_x1_0_PACT | 支持 | 支持 |
|
|
|
|
|
| PP-ShiTu | PPShiTu_general_rec、PPShiTu_mainbody_det | 支持 | 支持 |
|
|
|
|
|
| PP-ShiTu | GeneralRecognition_PPLCNet_x2_5_KL | 支持 | 支持 |
|
|
|
|
|
| PP-ShiTu | GeneralRecognition_PPLCNet_x2_5_PACT | 支持 | 支持 |
|
|
|
|
|
| PPHGNet | PPHGNet_small | 支持 | 支持 |
|
|
|
|
|
| PPHGNet | PPHGNet_small_KL | 支持 | 支持 |
|
|
|
|
|
| PPHGNet | PPHGNet_small_PACT | 支持 | 支持 |
|
|
|
|
|
| PPHGNet | PPHGNet_tiny | 支持 | 支持 |
|
|
|
|
|
| PPLCNet | PPLCNet_x0_25 | 支持 | 支持 |
|
|
|
|
|
| PPLCNet | PPLCNet_x0_35 | 支持 | 支持 |
|
|
|
|
|
| PPLCNet | PPLCNet_x0_5 | 支持 | 支持 |
|
|
|
|
|
| PPLCNet | PPLCNet_x0_75 | 支持 | 支持 |
|
|
|
|
|
| PPLCNet | PPLCNet_x1_0 | 支持 | 支持 |
|
|
|
|
|
| PPLCNet | PPLCNet_x1_0_KL | 支持 | 支持 |
|
|
|
|
|
| PPLCNet | PPLCNet_x1_0_PACT | 支持 | 支持 |
|
|
|
|
|
| PPLCNet | PPLCNet_x1_5 | 支持 | 支持 |
|
|
|
|
|
| PPLCNet | PPLCNet_x2_0 | 支持 | 支持 |
|
|
|
|
|
| PPLCNet | PPLCNet_x2_5 | 支持 | 支持 |
|
|
|
|
|
| PPLCNetV2 | PPLCNetV2_base | 支持 | 支持 |
|
|
|
|
|
| PPLCNetV2 | PPLCNetV2_base_KL | 支持 | 支持 |
|
|
|
|
|
| ResNet | ResNet50 | 支持 | 支持 |
|
|
|
|
|
| ResNet | ResNet50_vd | 支持 | 支持 |
|
|
|
|
|
| ResNet | ResNet50_vd_KL | 支持 | 支持 |
|
|
|
|
|
| ResNet | ResNet50_vd_PACT | 支持 | 支持 |
|
|
|
|
|
| SwinTransformer | SwinTransformer_tiny_patch4_window7_224 | 支持 | 支持 |
|
|
|
|
|
| SwinTransformer | SwinTransformer_tiny_patch4_window7_224_KL | 支持 | 支持 |
|
|
|
|
|
| SwinTransformer | SwinTransformer_tiny_patch4_window7_224_PACT | 支持 | 支持 |
|
2021-12-01 19:39:13 +08:00
|
|
|
|
|
2022-05-30 22:27:19 +08:00
|
|
|
|
## 2. 测试流程(以**ResNet50**为例)
|
2021-12-01 19:39:13 +08:00
|
|
|
|
|
2022-05-30 22:27:19 +08:00
|
|
|
|
|
|
|
|
|
<details>
|
|
|
|
|
<summary><b>准备数据、准备推理模型、编译opencv、编译(下载)Paddle Inference、编译C++预测Demo(已写入prepare.sh自动执行,点击以展开详细内容或者折叠)
|
|
|
|
|
</b></summary>
|
|
|
|
|
|
|
|
|
|
### 2.1 准备数据和推理模型
|
|
|
|
|
|
|
|
|
|
#### 2.1.1 准备数据
|
|
|
|
|
|
|
|
|
|
默认使用`./deploy/images/ILSVRC2012_val_00000010.jpeg`作为测试输入图片。
|
|
|
|
|
|
|
|
|
|
#### 2.1.2 准备推理模型
|
|
|
|
|
|
|
|
|
|
* 如果已经训练好了模型,可以参考[模型导出](../../docs/zh_CN/inference_deployment/export_model.md),导出`inference model`,并将导出路径设置为`./deploy/models/ResNet50_infer`,
|
|
|
|
|
导出完毕后文件结构如下
|
2021-12-01 19:39:13 +08:00
|
|
|
|
|
|
|
|
|
```shell
|
2022-05-30 22:27:19 +08:00
|
|
|
|
./deploy/models/ResNet50_infer/
|
|
|
|
|
├── inference.pdmodel
|
|
|
|
|
├── inference.pdiparams
|
|
|
|
|
└── inference.pdiparams.info
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
### 2.2 准备环境
|
|
|
|
|
|
|
|
|
|
#### 2.2.1 运行准备
|
|
|
|
|
|
|
|
|
|
配置合适的编译和执行环境,其中包括编译器,cuda等一些基础库,建议安装docker环境,[参考链接](https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/zh/install/docker/linux-docker.html)。
|
2021-12-01 19:39:13 +08:00
|
|
|
|
|
2022-05-30 22:27:19 +08:00
|
|
|
|
#### 2.2.2 编译opencv库
|
|
|
|
|
|
|
|
|
|
* 首先需要从opencv官网上下载Linux环境下的源码,以3.4.7版本为例,下载及解压缩命令如下:
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
cd deploy/cpp
|
|
|
|
|
wget https://github.com/opencv/opencv/archive/3.4.7.tar.gz
|
|
|
|
|
tar -xvf 3.4.7.tar.gz
|
2021-12-01 19:39:13 +08:00
|
|
|
|
```
|
|
|
|
|
|
2022-05-30 22:27:19 +08:00
|
|
|
|
* 编译opencv,首先设置opencv源码路径(`root_path`)以及安装路径(`install_path`),`root_path`为下载的opencv源码路径,`install_path`为opencv的安装路径。在本例中,源码路径即为当前目录下的`opencv-3.4.7/`。
|
2021-12-01 19:39:13 +08:00
|
|
|
|
|
|
|
|
|
```shell
|
2022-05-30 22:27:19 +08:00
|
|
|
|
cd ./opencv-3.4.7
|
|
|
|
|
export root_path=$PWD
|
|
|
|
|
export install_path=${root_path}/opencv3
|
2021-12-01 19:39:13 +08:00
|
|
|
|
```
|
|
|
|
|
|
2022-05-30 22:27:19 +08:00
|
|
|
|
* 然后在opencv源码路径下,按照下面的命令进行编译。
|
|
|
|
|
|
|
|
|
|
```shell
|
|
|
|
|
rm -rf build
|
|
|
|
|
mkdir build
|
|
|
|
|
cd build
|
|
|
|
|
|
|
|
|
|
cmake .. \
|
|
|
|
|
-DCMAKE_INSTALL_PREFIX=${install_path} \
|
|
|
|
|
-DCMAKE_BUILD_TYPE=Release \
|
|
|
|
|
-DBUILD_SHARED_LIBS=OFF \
|
|
|
|
|
-DWITH_IPP=OFF \
|
|
|
|
|
-DBUILD_IPP_IW=OFF \
|
|
|
|
|
-DWITH_LAPACK=OFF \
|
|
|
|
|
-DWITH_EIGEN=OFF \
|
|
|
|
|
-DCMAKE_INSTALL_LIBDIR=lib64 \
|
|
|
|
|
-DWITH_ZLIB=ON \
|
|
|
|
|
-DBUILD_ZLIB=ON \
|
|
|
|
|
-DWITH_JPEG=ON \
|
|
|
|
|
-DBUILD_JPEG=ON \
|
|
|
|
|
-DWITH_PNG=ON \
|
|
|
|
|
-DBUILD_PNG=ON \
|
|
|
|
|
-DWITH_TIFF=ON \
|
|
|
|
|
-DBUILD_TIFF=ON
|
|
|
|
|
|
|
|
|
|
make -j
|
|
|
|
|
make install
|
2021-12-01 19:39:13 +08:00
|
|
|
|
```
|
2022-05-30 22:27:19 +08:00
|
|
|
|
|
|
|
|
|
* `make install`完成之后,会在该文件夹下生成opencv头文件和库文件,用于后面的代码编译。
|
|
|
|
|
|
|
|
|
|
以opencv3.4.7版本为例,最终在安装路径下的文件结构如下所示。**注意**:不同的opencv版本,下述的文件结构可能不同。
|
|
|
|
|
|
|
|
|
|
```shell
|
|
|
|
|
opencv3/
|
|
|
|
|
├── bin :可执行文件
|
|
|
|
|
├── include :头文件
|
|
|
|
|
├── lib64 :库文件
|
|
|
|
|
└── share :部分第三方库
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
#### 2.2.3 下载或者编译Paddle预测库
|
|
|
|
|
|
|
|
|
|
* 有2种方式获取Paddle预测库,下面进行详细介绍。
|
|
|
|
|
|
|
|
|
|
##### 预测库源码编译
|
|
|
|
|
* 如果希望获取最新预测库特性,可以从Paddle github上克隆最新代码,源码编译预测库。
|
|
|
|
|
* 可以参考[Paddle预测库官网](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/guides/05_inference_deployment/inference/build_and_install_lib_cn.html#id16)的说明,从github上获取Paddle代码,然后进行编译,生成最新的预测库。使用git获取代码方法如下。
|
|
|
|
|
|
|
|
|
|
```shell
|
|
|
|
|
git clone https://github.com/PaddlePaddle/Paddle.git
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
* 进入Paddle目录后,使用如下命令编译。
|
|
|
|
|
|
|
|
|
|
```shell
|
|
|
|
|
rm -rf build
|
|
|
|
|
mkdir build
|
|
|
|
|
cd build
|
|
|
|
|
|
|
|
|
|
cmake .. \
|
|
|
|
|
-DWITH_CONTRIB=OFF \
|
|
|
|
|
-DWITH_MKL=ON \
|
|
|
|
|
-DWITH_MKLDNN=ON \
|
|
|
|
|
-DWITH_TESTING=OFF \
|
|
|
|
|
-DCMAKE_BUILD_TYPE=Release \
|
|
|
|
|
-DWITH_INFERENCE_API_TEST=OFF \
|
|
|
|
|
-DON_INFER=ON \
|
|
|
|
|
-DWITH_PYTHON=ON
|
|
|
|
|
make -j
|
|
|
|
|
make inference_lib_dist
|
2021-12-01 19:39:13 +08:00
|
|
|
|
```
|
2022-05-30 22:27:19 +08:00
|
|
|
|
|
|
|
|
|
更多编译参数选项可以参考Paddle C++预测库官网:[https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/guides/05_inference_deployment/inference/build_and_install_lib_cn.html#id16](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/guides/05_inference_deployment/inference/build_and_install_lib_cn.html#id16)。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
* 编译完成之后,可以在`build/paddle_inference_install_dir/`文件下看到生成了以下文件及文件夹。
|
|
|
|
|
|
2021-12-01 19:39:13 +08:00
|
|
|
|
```
|
2022-05-30 22:27:19 +08:00
|
|
|
|
build/paddle_inference_install_dir/
|
|
|
|
|
├── CMakeCache.txt
|
|
|
|
|
├── paddle
|
|
|
|
|
├── third_party
|
|
|
|
|
└── version.txt
|
2021-12-01 19:39:13 +08:00
|
|
|
|
```
|
|
|
|
|
|
2022-05-30 22:27:19 +08:00
|
|
|
|
其中`paddle`就是之后进行C++预测时所需的Paddle库,`version.txt`中包含当前预测库的版本信息。
|
|
|
|
|
|
|
|
|
|
##### 直接下载安装
|
2021-12-01 19:39:13 +08:00
|
|
|
|
|
2022-05-30 22:27:19 +08:00
|
|
|
|
* [Paddle预测库官网](https://paddleinference.paddlepaddle.org.cn/user_guides/download_lib.html)上提供了不同cuda版本的Linux预测库,可以在官网查看并选择合适的预测库版本。
|
2021-12-01 19:39:13 +08:00
|
|
|
|
|
2022-06-16 11:42:30 +08:00
|
|
|
|
以`manylinux_cuda10.1_cudnn7.6_avx_mkl_trt6_gcc8.2`版本为例,使用下述命令下载并解压:
|
2022-05-30 22:27:19 +08:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
```shell
|
2022-06-16 11:42:30 +08:00
|
|
|
|
wget https://paddle-inference-lib.bj.bcebos.com/2.2.2/cxx_c/Linux/GPU/x86-64_gcc8.2_avx_mkl_cuda10.1_cudnn7.6.5_trt6.0.1.5/paddle_inference.tgz
|
2022-05-30 22:27:19 +08:00
|
|
|
|
|
|
|
|
|
tar -xvf paddle_inference.tgz
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
最终会在当前的文件夹中生成`paddle_inference/`的子文件夹,文件内容和上述的paddle_inference_install_dir一样。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#### 2.2.4 编译C++预测Demo
|
|
|
|
|
|
|
|
|
|
* 编译命令如下,其中Paddle C++预测库、opencv等其他依赖库的地址需要换成自己机器上的实际地址。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
```shell
|
|
|
|
|
# 在deploy/cpp下执行以下命令
|
|
|
|
|
bash tools/build.sh
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
具体地,`tools/build.sh`中内容如下。
|
|
|
|
|
|
|
|
|
|
```shell
|
|
|
|
|
OPENCV_DIR=your_opencv_dir
|
|
|
|
|
LIB_DIR=your_paddle_inference_dir
|
|
|
|
|
CUDA_LIB_DIR=your_cuda_lib_dir
|
|
|
|
|
CUDNN_LIB_DIR=your_cudnn_lib_dir
|
|
|
|
|
TENSORRT_DIR=your_tensorrt_lib_dir
|
|
|
|
|
|
|
|
|
|
BUILD_DIR=build
|
|
|
|
|
rm -rf ${BUILD_DIR}
|
|
|
|
|
mkdir ${BUILD_DIR}
|
|
|
|
|
cd ${BUILD_DIR}
|
|
|
|
|
cmake .. \
|
|
|
|
|
-DPADDLE_LIB=${LIB_DIR} \
|
|
|
|
|
-DWITH_MKL=ON \
|
|
|
|
|
-DDEMO_NAME=clas_system \
|
|
|
|
|
-DWITH_GPU=OFF \
|
|
|
|
|
-DWITH_STATIC_LIB=OFF \
|
|
|
|
|
-DWITH_TENSORRT=OFF \
|
|
|
|
|
-DTENSORRT_DIR=${TENSORRT_DIR} \
|
|
|
|
|
-DOPENCV_DIR=${OPENCV_DIR} \
|
|
|
|
|
-DCUDNN_LIB=${CUDNN_LIB_DIR} \
|
|
|
|
|
-DCUDA_LIB=${CUDA_LIB_DIR} \
|
|
|
|
|
|
|
|
|
|
make -j
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
上述命令中,
|
|
|
|
|
|
|
|
|
|
* `OPENCV_DIR`为opencv编译安装的地址(本例中需修改为`opencv-3.4.7/opencv3`文件夹的路径);
|
|
|
|
|
|
|
|
|
|
* `LIB_DIR`为下载的Paddle预测库(`paddle_inference`文件夹),或编译生成的Paddle预测库(`build/paddle_inference_install_dir`文件夹)的路径;
|
|
|
|
|
|
|
|
|
|
* `CUDA_LIB_DIR`为cuda库文件地址,在docker中一般为`/usr/local/cuda/lib64`;
|
|
|
|
|
|
|
|
|
|
* `CUDNN_LIB_DIR`为cudnn库文件地址,在docker中一般为`/usr/lib64`。
|
|
|
|
|
|
|
|
|
|
* `TENSORRT_DIR`是tensorrt库文件地址,在dokcer中一般为`/usr/local/TensorRT-7.2.3.4/`,TensorRT需要结合GPU使用。
|
|
|
|
|
|
|
|
|
|
在执行上述命令,编译完成之后,会在当前路径下生成`build`文件夹,其中生成一个名为`clas_system`的可执行文件。
|
|
|
|
|
</details>
|
|
|
|
|
|
|
|
|
|
* 可执行以下命令,自动完成上述准备环境中的所需内容
|
|
|
|
|
```shell
|
2022-05-31 14:52:39 +08:00
|
|
|
|
bash test_tipc/prepare.sh test_tipc/config/ResNet/ResNet50_linux_gpu_normal_normal_infer_cpp_linux_gpu_cpu.txt cpp_infer
|
2022-05-30 22:27:19 +08:00
|
|
|
|
```
|
|
|
|
|
### 2.3 功能测试
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
测试方法如下所示,希望测试不同的模型文件,只需更换为自己的参数配置文件,即可完成对应模型的测试。
|
2021-12-01 19:39:13 +08:00
|
|
|
|
|
|
|
|
|
```shell
|
2022-06-22 18:21:30 +08:00
|
|
|
|
bash test_tipc/test_inference_cpp.sh ${your_params_file} cpp_infer
|
2021-12-01 19:39:13 +08:00
|
|
|
|
```
|
|
|
|
|
|
2022-05-30 22:27:19 +08:00
|
|
|
|
以`ResNet50`的`Linux GPU/CPU C++推理测试`为例,命令如下所示。
|
2021-12-01 19:39:13 +08:00
|
|
|
|
|
2022-05-30 22:27:19 +08:00
|
|
|
|
```shell
|
2022-06-22 18:21:30 +08:00
|
|
|
|
bash test_tipc/test_inference_cpp.sh test_tipc/config/ResNet/ResNet50_linux_gpu_normal_normal_infer_cpp_linux_gpu_cpu.txt cpp_infer
|
2022-05-30 22:27:19 +08:00
|
|
|
|
```
|
2021-12-01 19:39:13 +08:00
|
|
|
|
|
2022-05-30 22:27:19 +08:00
|
|
|
|
输出结果如下,表示命令运行成功。
|
2021-12-01 19:39:13 +08:00
|
|
|
|
|
2022-05-30 22:27:19 +08:00
|
|
|
|
```shell
|
2022-06-22 18:21:30 +08:00
|
|
|
|
Run successfully with command - ResNet50 - ./deploy/cpp/build/clas_system -c inference_cls.yaml > ./test_tipc/output/ResNet50/cpp_infer/cpp_infer_gpu_usetrt_False_precision_fp32_batchsize_1.log 2>&1!
|
|
|
|
|
Run successfully with command - ResNet50 - ./deploy/cpp/build/clas_system -c inference_cls.yaml > ./test_tipc/output/ResNet50/cpp_infer/cpp_infer_cpu_usemkldnn_False_threads_1_precision_fp32_batchsize_1.log 2>&1!
|
2022-05-30 22:27:19 +08:00
|
|
|
|
```
|
2021-12-01 19:39:13 +08:00
|
|
|
|
|
2022-05-30 22:27:19 +08:00
|
|
|
|
最终log中会打印出结果,如下所示
|
|
|
|
|
```log
|
|
|
|
|
You are using Paddle compiled with TensorRT, but TensorRT dynamic library is not found. Ignore this if TensorRT is not needed.
|
|
|
|
|
=======Paddle Class inference config======
|
|
|
|
|
Global:
|
|
|
|
|
infer_imgs: ./deploy/images/ILSVRC2012_val_00000010.jpeg
|
|
|
|
|
inference_model_dir: ./deploy/models/ResNet50_infer
|
|
|
|
|
batch_size: 1
|
|
|
|
|
use_gpu: True
|
|
|
|
|
enable_mkldnn: True
|
|
|
|
|
cpu_num_threads: 10
|
|
|
|
|
enable_benchmark: True
|
|
|
|
|
use_fp16: False
|
|
|
|
|
ir_optim: True
|
|
|
|
|
use_tensorrt: False
|
|
|
|
|
gpu_mem: 8000
|
|
|
|
|
enable_profile: False
|
|
|
|
|
PreProcess:
|
|
|
|
|
transform_ops:
|
|
|
|
|
- ResizeImage:
|
|
|
|
|
resize_short: 256
|
|
|
|
|
- CropImage:
|
|
|
|
|
size: 224
|
|
|
|
|
- NormalizeImage:
|
|
|
|
|
scale: 0.00392157
|
|
|
|
|
mean: [0.485, 0.456, 0.406]
|
|
|
|
|
std: [0.229, 0.224, 0.225]
|
|
|
|
|
order: ""
|
|
|
|
|
channel_num: 3
|
|
|
|
|
- ToCHWImage: ~
|
|
|
|
|
PostProcess:
|
|
|
|
|
main_indicator: Topk
|
|
|
|
|
Topk:
|
|
|
|
|
topk: 5
|
|
|
|
|
class_id_map_file: ./ppcls/utils/imagenet1k_label_list.txt
|
|
|
|
|
SavePreLabel:
|
|
|
|
|
save_dir: ./pre_label/
|
|
|
|
|
=======End of Paddle Class inference config======
|
|
|
|
|
img_file_list length: 1
|
|
|
|
|
Current image path: ./deploy/images/ILSVRC2012_val_00000010.jpeg
|
|
|
|
|
Current total inferen time cost: 5449.39 ms.
|
2022-05-31 21:59:22 +08:00
|
|
|
|
Top1: class_id: 153, score: 0.4144, label: Maltese dog, Maltese terrier, Maltese
|
|
|
|
|
Top2: class_id: 332, score: 0.3909, label: Angora, Angora rabbit
|
|
|
|
|
Top3: class_id: 229, score: 0.0514, label: Old English sheepdog, bobtail
|
|
|
|
|
Top4: class_id: 204, score: 0.0430, label: Lhasa, Lhasa apso
|
|
|
|
|
Top5: class_id: 265, score: 0.0420, label: toy poodle
|
2021-12-01 19:39:13 +08:00
|
|
|
|
|
2022-05-30 22:27:19 +08:00
|
|
|
|
```
|
2022-06-22 18:21:30 +08:00
|
|
|
|
详细log位于`./test_tipc/output/ResNet50/cpp_infer/cpp_infer_gpu_usetrt_False_precision_fp32_batchsize_1.log`和`./test_tipc/output/ResNet50/cpp_infer_cpu_usemkldnn_False_threads_1_precision_fp32_batchsize_1.log`中。
|
2021-12-01 19:39:13 +08:00
|
|
|
|
|
2022-05-30 22:27:19 +08:00
|
|
|
|
如果运行失败,也会在终端中输出运行失败的日志信息以及对应的运行命令。可以基于该命令,分析运行失败的原因。
|