PaddleClas/ppcls/arch/backbone/legendary_models/hrnet.py

584 lines
16 KiB
Python
Raw Normal View History

2021-05-25 15:20:07 +08:00
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import numpy as np
import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
from paddle.nn.initializer import Uniform
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
__all__ = [
"HRNet_W18_C",
"HRNet_W30_C",
"HRNet_W32_C",
"HRNet_W40_C",
"HRNet_W44_C",
"HRNet_W48_C",
"HRNet_W60_C",
"HRNet_W64_C",
"SE_HRNet_W18_C",
"SE_HRNet_W30_C",
"SE_HRNet_W32_C",
"SE_HRNet_W40_C",
"SE_HRNet_W44_C",
"SE_HRNet_W48_C",
"SE_HRNet_W60_C",
"SE_HRNet_W64_C",
]
class ConvBNLayer(TheseusLayer):
def __init__(self,
num_channels,
num_filters,
filter_size,
stride=1,
groups=1,
act="relu"):
2021-05-25 15:20:07 +08:00
super(ConvBNLayer, self).__init__()
2021-05-25 15:50:50 +08:00
self._conv = nn.Conv2D(
2021-05-25 15:20:07 +08:00
in_channels=num_channels,
out_channels=num_filters,
kernel_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
bias_attr=False)
2021-05-25 15:50:50 +08:00
self._batch_norm = nn.BatchNorm(
2021-05-25 15:20:07 +08:00
num_filters,
2021-05-25 16:55:38 +08:00
act=act)
2021-05-25 15:20:07 +08:00
2021-05-25 15:46:41 +08:00
def forward(self, x, res_dict=None):
y = self._conv(x)
2021-05-25 15:20:07 +08:00
y = self._batch_norm(y)
return y
class BottleneckBlock(TheseusLayer):
def __init__(self,
num_channels,
num_filters,
has_se,
stride=1,
2021-05-26 14:29:56 +08:00
downsample=False):
2021-05-25 15:20:07 +08:00
super(BottleneckBlock, self).__init__()
self.has_se = has_se
self.downsample = downsample
self.conv1 = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters,
filter_size=1,
2021-05-25 17:19:33 +08:00
act="relu")
2021-05-25 15:20:07 +08:00
self.conv2 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters,
filter_size=3,
stride=stride,
2021-05-25 17:19:33 +08:00
act="relu")
2021-05-25 15:20:07 +08:00
self.conv3 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters * 4,
filter_size=1,
2021-05-25 17:19:33 +08:00
act=None)
2021-05-25 15:20:07 +08:00
if self.downsample:
self.conv_down = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters * 4,
filter_size=1,
2021-05-25 17:19:33 +08:00
act=None)
2021-05-25 15:20:07 +08:00
if self.has_se:
self.se = SELayer(
num_channels=num_filters * 4,
num_filters=num_filters * 4,
2021-05-26 14:29:56 +08:00
reduction_ratio=16)
2021-05-25 15:20:07 +08:00
2021-05-25 15:46:41 +08:00
def forward(self, x, res_dict=None):
residual = x
conv1 = self.conv1(x)
2021-05-25 15:20:07 +08:00
conv2 = self.conv2(conv1)
conv3 = self.conv3(conv2)
if self.downsample:
2021-05-25 15:46:41 +08:00
residual = self.conv_down(x)
2021-05-25 15:20:07 +08:00
if self.has_se:
conv3 = self.se(conv3)
y = paddle.add(x=residual, y=conv3)
y = F.relu(y)
return y
2021-05-26 00:15:43 +08:00
class BasicBlock(nn.Layer):
2021-05-25 15:20:07 +08:00
def __init__(self,
num_channels,
num_filters,
2021-05-26 14:29:56 +08:00
has_se=False):
2021-05-25 15:20:07 +08:00
super(BasicBlock, self).__init__()
self.has_se = has_se
self.conv1 = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters,
filter_size=3,
2021-05-26 00:15:43 +08:00
stride=1,
2021-05-26 00:17:38 +08:00
act="relu")
2021-05-25 15:20:07 +08:00
self.conv2 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters,
filter_size=3,
stride=1,
2021-05-26 00:17:38 +08:00
act=None)
2021-05-25 15:20:07 +08:00
if self.has_se:
self.se = SELayer(
num_channels=num_filters,
num_filters=num_filters,
2021-05-26 14:29:56 +08:00
reduction_ratio=16)
2021-05-25 15:20:07 +08:00
2021-05-26 00:15:43 +08:00
def forward(self, input):
2021-05-25 15:20:07 +08:00
residual = input
conv1 = self.conv1(input)
conv2 = self.conv2(conv1)
if self.has_se:
conv2 = self.se(conv2)
y = paddle.add(x=residual, y=conv2)
y = F.relu(y)
return y
class SELayer(TheseusLayer):
2021-05-26 14:29:56 +08:00
def __init__(self, num_channels, num_filters, reduction_ratio):
2021-05-25 15:20:07 +08:00
super(SELayer, self).__init__()
self.pool2d_gap = AdaptiveAvgPool2D(1)
self._num_channels = num_channels
med_ch = int(num_channels / reduction_ratio)
stdv = 1.0 / math.sqrt(num_channels * 1.0)
2021-05-25 15:50:50 +08:00
self.squeeze = nn.Linear(
2021-05-25 15:20:07 +08:00
num_channels,
med_ch,
weight_attr=ParamAttr(
2021-05-26 14:29:56 +08:00
initializer=Uniform(-stdv, stdv)))
2021-05-25 15:20:07 +08:00
stdv = 1.0 / math.sqrt(med_ch * 1.0)
2021-05-25 15:50:50 +08:00
self.excitation = nn.Linear(
2021-05-25 15:20:07 +08:00
med_ch,
num_filters,
weight_attr=ParamAttr(
2021-05-26 14:29:56 +08:00
initializer=Uniform(-stdv, stdv)))
2021-05-25 15:20:07 +08:00
2021-05-25 15:46:41 +08:00
def forward(self, input, res_dict=None):
2021-05-25 15:20:07 +08:00
pool = self.pool2d_gap(input)
pool = paddle.squeeze(pool, axis=[2, 3])
squeeze = self.squeeze(pool)
squeeze = F.relu(squeeze)
excitation = self.excitation(squeeze)
excitation = F.sigmoid(excitation)
excitation = paddle.unsqueeze(excitation, axis=[2, 3])
out = input * excitation
return out
class Stage(TheseusLayer):
def __init__(self,
num_modules,
num_filters,
2021-05-26 16:51:42 +08:00
has_se=False):
2021-05-25 15:20:07 +08:00
super(Stage, self).__init__()
self._num_modules = num_modules
2021-05-26 14:38:40 +08:00
self.stage_func_list = nn.LayerList()
2021-05-25 15:20:07 +08:00
for i in range(num_modules):
2021-05-26 15:47:17 +08:00
self.stage_func_list.append(
HighResolutionModule(
num_filters=num_filters,
2021-05-26 16:51:42 +08:00
has_se=has_se))
2021-05-25 15:20:07 +08:00
2021-05-25 15:46:41 +08:00
def forward(self, input, res_dict=None):
2021-05-25 15:20:07 +08:00
out = input
for idx in range(self._num_modules):
out = self.stage_func_list[idx](out)
return out
class HighResolutionModule(TheseusLayer):
def __init__(self,
num_filters,
2021-05-26 16:51:42 +08:00
has_se=False):
2021-05-25 15:20:07 +08:00
super(HighResolutionModule, self).__init__()
2021-05-26 15:47:17 +08:00
self.basic_block_list = nn.LayerList()
2021-05-26 00:15:43 +08:00
for i in range(len(num_filters)):
2021-05-26 15:47:17 +08:00
self.basic_block_list.append(
nn.Sequential(*[
2021-05-26 00:15:43 +08:00
BasicBlock(
2021-05-26 15:47:17 +08:00
num_channels=num_filters[i],
2021-05-26 00:15:43 +08:00
num_filters=num_filters[i],
2021-05-26 15:47:17 +08:00
has_se=has_se) for j in range(4)]))
2021-05-25 15:20:07 +08:00
self.fuse_func = FuseLayers(
in_channels=num_filters,
2021-05-26 16:51:42 +08:00
out_channels=num_filters)
2021-05-25 15:20:07 +08:00
2021-05-25 15:46:41 +08:00
def forward(self, input, res_dict=None):
2021-05-26 00:15:43 +08:00
outs = []
for idx, input in enumerate(input):
conv = input
basic_block_list = self.basic_block_list[idx]
for basic_block_func in basic_block_list:
conv = basic_block_func(conv)
outs.append(conv)
out = self.fuse_func(outs)
2021-05-25 15:20:07 +08:00
return out
class FuseLayers(TheseusLayer):
def __init__(self,
in_channels,
2021-05-26 16:51:42 +08:00
out_channels):
2021-05-25 15:20:07 +08:00
super(FuseLayers, self).__init__()
2021-05-26 15:47:17 +08:00
self._actual_ch = len(in_channels)
2021-05-25 15:20:07 +08:00
self._in_channels = in_channels
2021-05-26 15:47:17 +08:00
self.residual_func_list = nn.LayerList()
for i in range(len(in_channels)):
2021-05-25 15:20:07 +08:00
for j in range(len(in_channels)):
if j > i:
2021-05-26 15:47:17 +08:00
self.residual_func_list.append(
2021-05-25 15:20:07 +08:00
ConvBNLayer(
num_channels=in_channels[j],
num_filters=out_channels[i],
filter_size=1,
stride=1,
2021-05-25 17:19:33 +08:00
act=None))
2021-05-25 15:20:07 +08:00
elif j < i:
pre_num_filters = in_channels[j]
for k in range(i - j):
if k == i - j - 1:
2021-05-26 15:47:17 +08:00
self.residual_func_list.append(
2021-05-25 15:20:07 +08:00
ConvBNLayer(
num_channels=pre_num_filters,
num_filters=out_channels[i],
filter_size=3,
stride=2,
2021-05-25 17:19:33 +08:00
act=None))
2021-05-25 15:20:07 +08:00
pre_num_filters = out_channels[i]
else:
2021-05-26 15:47:17 +08:00
self.residual_func_list.append(
2021-05-25 15:20:07 +08:00
ConvBNLayer(
num_channels=pre_num_filters,
num_filters=out_channels[j],
filter_size=3,
stride=2,
2021-05-25 17:19:33 +08:00
act="relu"))
2021-05-25 15:20:07 +08:00
pre_num_filters = out_channels[j]
2021-05-25 15:46:41 +08:00
def forward(self, input, res_dict=None):
2021-05-25 15:20:07 +08:00
outs = []
residual_func_idx = 0
2021-05-26 15:47:17 +08:00
for i in range(len(self._in_channels)):
2021-05-25 15:20:07 +08:00
residual = input[i]
for j in range(len(self._in_channels)):
if j > i:
y = self.residual_func_list[residual_func_idx](input[j])
residual_func_idx += 1
y = F.upsample(y, scale_factor=2**(j - i), mode="nearest")
residual = paddle.add(x=residual, y=y)
elif j < i:
y = input[j]
for k in range(i - j):
y = self.residual_func_list[residual_func_idx](y)
residual_func_idx += 1
residual = paddle.add(x=residual, y=y)
residual = F.relu(residual)
outs.append(residual)
return outs
class LastClsOut(TheseusLayer):
def __init__(self,
num_channel_list,
has_se,
2021-05-26 16:51:42 +08:00
num_filters_list=[32, 64, 128, 256]):
2021-05-25 15:20:07 +08:00
super(LastClsOut, self).__init__()
2021-05-26 14:58:09 +08:00
self.func_list = nn.LayerList()
2021-05-25 15:20:07 +08:00
for idx in range(len(num_channel_list)):
2021-05-26 14:58:09 +08:00
self.func_list.append(
2021-05-25 15:20:07 +08:00
BottleneckBlock(
num_channels=num_channel_list[idx],
num_filters=num_filters_list[idx],
has_se=has_se,
2021-05-26 14:29:56 +08:00
downsample=True))
2021-05-25 15:20:07 +08:00
2021-05-25 15:46:41 +08:00
def forward(self, inputs, res_dict=None):
2021-05-25 15:20:07 +08:00
outs = []
for idx, input in enumerate(inputs):
out = self.func_list[idx](input)
outs.append(out)
return outs
class HRNet(TheseusLayer):
2021-05-27 17:02:28 +08:00
'''
HRNet
Args:
width: int=18. Base channel number of HRNet.
has_se: bool=False. If 'True', add se module to HRNet.
class_num: int=1000. Output num of last fc layer.
'''
def __init__(self, width=18, has_se=False, class_num=1000):
2021-05-25 15:20:07 +08:00
super(HRNet, self).__init__()
self.width = width
self.has_se = has_se
2021-05-27 17:02:28 +08:00
self._class_num = class_num
2021-05-25 15:20:07 +08:00
2021-05-26 16:51:42 +08:00
channels_2 = [self.width, self.width * 2]
channels_3 = [self.width, self.width * 2, self.width * 4]
channels_4 = [self.width, self.width * 2, self.width * 4, self.width * 8]
2021-05-25 15:20:07 +08:00
self.conv_layer1_1 = ConvBNLayer(
num_channels=3,
num_filters=64,
filter_size=3,
stride=2,
2021-05-25 17:19:33 +08:00
act='relu')
2021-05-25 15:20:07 +08:00
self.conv_layer1_2 = ConvBNLayer(
num_channels=64,
num_filters=64,
filter_size=3,
stride=2,
2021-05-25 17:19:33 +08:00
act='relu')
2021-05-25 15:20:07 +08:00
2021-05-26 16:42:59 +08:00
self.layer1 = nn.Sequential(*[
2021-05-26 15:47:17 +08:00
BottleneckBlock(
2021-05-25 23:58:51 +08:00
num_channels=64 if i == 0 else 256,
num_filters=64,
has_se=has_se,
stride=1,
2021-05-26 00:02:11 +08:00
downsample=True if i == 0 else False)
2021-05-25 23:58:51 +08:00
for i in range(4)
])
2021-05-25 15:20:07 +08:00
2021-05-25 23:54:23 +08:00
self.tr1_1 = ConvBNLayer(
2021-05-25 23:37:43 +08:00
num_channels=256,
num_filters=width,
2021-05-25 23:54:23 +08:00
filter_size=3)
self.tr1_2 = ConvBNLayer(
2021-05-25 23:46:11 +08:00
num_channels=256,
2021-05-25 23:37:43 +08:00
num_filters=width * 2,
2021-05-25 23:55:12 +08:00
filter_size=3,
stride=2
)
2021-05-25 15:20:07 +08:00
self.st2 = Stage(
2021-05-26 00:31:08 +08:00
num_modules=1,
2021-05-25 15:20:07 +08:00
num_filters=channels_2,
2021-05-26 16:51:42 +08:00
has_se=self.has_se)
2021-05-25 15:20:07 +08:00
2021-05-25 23:54:23 +08:00
self.tr2 = ConvBNLayer(
2021-05-25 23:37:43 +08:00
num_channels=width * 2,
num_filters=width * 4,
2021-05-25 23:55:12 +08:00
filter_size=3,
stride=2
)
2021-05-25 15:20:07 +08:00
self.st3 = Stage(
2021-05-26 00:31:08 +08:00
num_modules=4,
2021-05-25 15:20:07 +08:00
num_filters=channels_3,
2021-05-26 16:51:42 +08:00
has_se=self.has_se)
2021-05-25 15:20:07 +08:00
2021-05-25 23:54:23 +08:00
self.tr3 = ConvBNLayer(
2021-05-25 23:37:43 +08:00
num_channels=width * 4,
num_filters=width * 8,
2021-05-25 23:55:12 +08:00
filter_size=3,
stride=2
)
2021-05-25 23:37:43 +08:00
2021-05-25 15:20:07 +08:00
self.st4 = Stage(
2021-05-26 00:31:08 +08:00
num_modules=3,
2021-05-25 15:20:07 +08:00
num_filters=channels_4,
2021-05-26 16:51:42 +08:00
has_se=self.has_se)
2021-05-25 15:20:07 +08:00
# classification
num_filters_list = [32, 64, 128, 256]
self.last_cls = LastClsOut(
num_channel_list=channels_4,
has_se=self.has_se,
2021-05-26 16:51:42 +08:00
num_filters_list=num_filters_list)
2021-05-25 15:20:07 +08:00
last_num_filters = [256, 512, 1024]
2021-05-26 14:29:56 +08:00
self.cls_head_conv_list = nn.LayerList()
2021-05-25 15:20:07 +08:00
for idx in range(3):
self.cls_head_conv_list.append(
ConvBNLayer(
num_channels=num_filters_list[idx] * 4,
num_filters=last_num_filters[idx],
filter_size=3,
2021-05-26 14:29:56 +08:00
stride=2))
2021-05-25 15:20:07 +08:00
self.conv_last = ConvBNLayer(
num_channels=1024,
num_filters=2048,
filter_size=1,
2021-05-25 17:19:33 +08:00
stride=1)
2021-05-25 15:20:07 +08:00
self.pool2d_avg = AdaptiveAvgPool2D(1)
stdv = 1.0 / math.sqrt(2048 * 1.0)
2021-05-25 15:50:50 +08:00
self.out = nn.Linear(
2021-05-25 15:20:07 +08:00
2048,
2021-05-27 17:02:28 +08:00
class_num,
2021-05-25 15:20:07 +08:00
weight_attr=ParamAttr(
2021-05-26 14:29:56 +08:00
initializer=Uniform(-stdv, stdv)))
2021-05-25 15:20:07 +08:00
2021-05-25 15:46:41 +08:00
def forward(self, input, res_dict=None):
2021-05-25 15:20:07 +08:00
conv1 = self.conv_layer1_1(input)
conv2 = self.conv_layer1_2(conv1)
2021-05-26 00:02:11 +08:00
la1 = self.layer1(conv2)
2021-05-25 15:20:07 +08:00
2021-05-25 23:44:11 +08:00
tr1_1 = self.tr1_1(la1)
tr1_2 = self.tr1_2(la1)
2021-05-25 23:43:41 +08:00
st2 = self.st2([tr1_1, tr1_2])
2021-05-25 15:20:07 +08:00
2021-05-25 23:43:41 +08:00
tr2 = self.tr2(st2[-1])
st2.append(tr2)
st3 = self.st3(st2)
2021-05-25 15:20:07 +08:00
2021-05-25 23:43:41 +08:00
tr3 = self.tr3(st3[-1])
st3.append(tr3)
st4 = self.st4(st3)
2021-05-25 15:20:07 +08:00
last_cls = self.last_cls(st4)
y = last_cls[0]
for idx in range(3):
y = paddle.add(last_cls[idx + 1], self.cls_head_conv_list[idx](y))
y = self.conv_last(y)
y = self.pool2d_avg(y)
y = paddle.reshape(y, shape=[-1, y.shape[1]])
y = self.out(y)
return y
def HRNet_W18_C(**args):
model = HRNet(width=18, **args)
return model
def HRNet_W30_C(**args):
model = HRNet(width=30, **args)
return model
def HRNet_W32_C(**args):
model = HRNet(width=32, **args)
return model
def HRNet_W40_C(**args):
model = HRNet(width=40, **args)
return model
def HRNet_W44_C(**args):
model = HRNet(width=44, **args)
return model
def HRNet_W48_C(**args):
model = HRNet(width=48, **args)
return model
def HRNet_W60_C(**args):
model = HRNet(width=60, **args)
return model
def HRNet_W64_C(**args):
model = HRNet(width=64, **args)
return model
def SE_HRNet_W18_C(**args):
model = HRNet(width=18, has_se=True, **args)
return model
def SE_HRNet_W30_C(**args):
model = HRNet(width=30, has_se=True, **args)
return model
def SE_HRNet_W32_C(**args):
model = HRNet(width=32, has_se=True, **args)
return model
def SE_HRNet_W40_C(**args):
model = HRNet(width=40, has_se=True, **args)
return model
def SE_HRNet_W44_C(**args):
model = HRNet(width=44, has_se=True, **args)
return model
def SE_HRNet_W48_C(**args):
model = HRNet(width=48, has_se=True, **args)
return model
def SE_HRNet_W60_C(**args):
model = HRNet(width=60, has_se=True, **args)
return model
def SE_HRNet_W64_C(**args):
model = HRNet(width=64, has_se=True, **args)
return model