2021-05-25 15:20:07 +08:00
|
|
|
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
from __future__ import absolute_import
|
|
|
|
from __future__ import division
|
|
|
|
from __future__ import print_function
|
|
|
|
|
|
|
|
import math
|
|
|
|
import numpy as np
|
|
|
|
import paddle
|
|
|
|
from paddle import ParamAttr
|
|
|
|
import paddle.nn as nn
|
|
|
|
import paddle.nn.functional as F
|
|
|
|
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
|
|
|
|
from paddle.nn.initializer import Uniform
|
|
|
|
|
|
|
|
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
|
|
|
|
|
|
|
|
__all__ = [
|
|
|
|
"HRNet_W18_C",
|
|
|
|
"HRNet_W30_C",
|
|
|
|
"HRNet_W32_C",
|
|
|
|
"HRNet_W40_C",
|
|
|
|
"HRNet_W44_C",
|
|
|
|
"HRNet_W48_C",
|
|
|
|
"HRNet_W60_C",
|
|
|
|
"HRNet_W64_C",
|
|
|
|
"SE_HRNet_W18_C",
|
|
|
|
"SE_HRNet_W30_C",
|
|
|
|
"SE_HRNet_W32_C",
|
|
|
|
"SE_HRNet_W40_C",
|
|
|
|
"SE_HRNet_W44_C",
|
|
|
|
"SE_HRNet_W48_C",
|
|
|
|
"SE_HRNet_W60_C",
|
|
|
|
"SE_HRNet_W64_C",
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
class ConvBNLayer(TheseusLayer):
|
|
|
|
def __init__(self,
|
|
|
|
num_channels,
|
|
|
|
num_filters,
|
|
|
|
filter_size,
|
|
|
|
stride=1,
|
|
|
|
groups=1,
|
2021-05-25 17:16:44 +08:00
|
|
|
act="relu"):
|
2021-05-25 15:20:07 +08:00
|
|
|
super(ConvBNLayer, self).__init__()
|
|
|
|
|
2021-05-25 15:50:50 +08:00
|
|
|
self._conv = nn.Conv2D(
|
2021-05-25 15:20:07 +08:00
|
|
|
in_channels=num_channels,
|
|
|
|
out_channels=num_filters,
|
|
|
|
kernel_size=filter_size,
|
|
|
|
stride=stride,
|
|
|
|
padding=(filter_size - 1) // 2,
|
|
|
|
groups=groups,
|
|
|
|
bias_attr=False)
|
2021-05-25 15:50:50 +08:00
|
|
|
self._batch_norm = nn.BatchNorm(
|
2021-05-25 15:20:07 +08:00
|
|
|
num_filters,
|
2021-05-25 16:55:38 +08:00
|
|
|
act=act)
|
2021-05-25 15:20:07 +08:00
|
|
|
|
2021-05-25 15:46:41 +08:00
|
|
|
def forward(self, x, res_dict=None):
|
|
|
|
y = self._conv(x)
|
2021-05-25 15:20:07 +08:00
|
|
|
y = self._batch_norm(y)
|
|
|
|
return y
|
|
|
|
|
|
|
|
|
|
|
|
class BottleneckBlock(TheseusLayer):
|
|
|
|
def __init__(self,
|
|
|
|
num_channels,
|
|
|
|
num_filters,
|
|
|
|
has_se,
|
|
|
|
stride=1,
|
2021-05-26 14:29:56 +08:00
|
|
|
downsample=False):
|
2021-05-25 15:20:07 +08:00
|
|
|
super(BottleneckBlock, self).__init__()
|
|
|
|
|
|
|
|
self.has_se = has_se
|
|
|
|
self.downsample = downsample
|
|
|
|
|
|
|
|
self.conv1 = ConvBNLayer(
|
|
|
|
num_channels=num_channels,
|
|
|
|
num_filters=num_filters,
|
|
|
|
filter_size=1,
|
2021-05-25 17:19:33 +08:00
|
|
|
act="relu")
|
2021-05-25 15:20:07 +08:00
|
|
|
self.conv2 = ConvBNLayer(
|
|
|
|
num_channels=num_filters,
|
|
|
|
num_filters=num_filters,
|
|
|
|
filter_size=3,
|
|
|
|
stride=stride,
|
2021-05-25 17:19:33 +08:00
|
|
|
act="relu")
|
2021-05-25 15:20:07 +08:00
|
|
|
self.conv3 = ConvBNLayer(
|
|
|
|
num_channels=num_filters,
|
|
|
|
num_filters=num_filters * 4,
|
|
|
|
filter_size=1,
|
2021-05-25 17:19:33 +08:00
|
|
|
act=None)
|
2021-05-25 15:20:07 +08:00
|
|
|
|
|
|
|
if self.downsample:
|
|
|
|
self.conv_down = ConvBNLayer(
|
|
|
|
num_channels=num_channels,
|
|
|
|
num_filters=num_filters * 4,
|
|
|
|
filter_size=1,
|
2021-05-25 17:19:33 +08:00
|
|
|
act=None)
|
2021-05-25 15:20:07 +08:00
|
|
|
|
|
|
|
if self.has_se:
|
|
|
|
self.se = SELayer(
|
|
|
|
num_channels=num_filters * 4,
|
|
|
|
num_filters=num_filters * 4,
|
2021-05-26 14:29:56 +08:00
|
|
|
reduction_ratio=16)
|
2021-05-25 15:20:07 +08:00
|
|
|
|
2021-05-25 15:46:41 +08:00
|
|
|
def forward(self, x, res_dict=None):
|
|
|
|
residual = x
|
|
|
|
conv1 = self.conv1(x)
|
2021-05-25 15:20:07 +08:00
|
|
|
conv2 = self.conv2(conv1)
|
|
|
|
conv3 = self.conv3(conv2)
|
|
|
|
|
|
|
|
if self.downsample:
|
2021-05-25 15:46:41 +08:00
|
|
|
residual = self.conv_down(x)
|
2021-05-25 15:20:07 +08:00
|
|
|
|
|
|
|
if self.has_se:
|
|
|
|
conv3 = self.se(conv3)
|
|
|
|
|
|
|
|
y = paddle.add(x=residual, y=conv3)
|
|
|
|
y = F.relu(y)
|
|
|
|
return y
|
|
|
|
|
|
|
|
|
2021-05-26 00:15:43 +08:00
|
|
|
class BasicBlock(nn.Layer):
|
2021-05-25 15:20:07 +08:00
|
|
|
def __init__(self,
|
|
|
|
num_channels,
|
|
|
|
num_filters,
|
2021-05-26 14:29:56 +08:00
|
|
|
has_se=False):
|
2021-05-25 15:20:07 +08:00
|
|
|
super(BasicBlock, self).__init__()
|
|
|
|
|
|
|
|
self.has_se = has_se
|
|
|
|
|
|
|
|
self.conv1 = ConvBNLayer(
|
|
|
|
num_channels=num_channels,
|
|
|
|
num_filters=num_filters,
|
|
|
|
filter_size=3,
|
2021-05-26 00:15:43 +08:00
|
|
|
stride=1,
|
2021-05-26 00:17:38 +08:00
|
|
|
act="relu")
|
2021-05-25 15:20:07 +08:00
|
|
|
self.conv2 = ConvBNLayer(
|
|
|
|
num_channels=num_filters,
|
|
|
|
num_filters=num_filters,
|
|
|
|
filter_size=3,
|
|
|
|
stride=1,
|
2021-05-26 00:17:38 +08:00
|
|
|
act=None)
|
2021-05-25 15:20:07 +08:00
|
|
|
|
|
|
|
if self.has_se:
|
|
|
|
self.se = SELayer(
|
|
|
|
num_channels=num_filters,
|
|
|
|
num_filters=num_filters,
|
2021-05-26 14:29:56 +08:00
|
|
|
reduction_ratio=16)
|
2021-05-25 15:20:07 +08:00
|
|
|
|
2021-05-26 00:15:43 +08:00
|
|
|
def forward(self, input):
|
2021-05-25 15:20:07 +08:00
|
|
|
residual = input
|
|
|
|
conv1 = self.conv1(input)
|
|
|
|
conv2 = self.conv2(conv1)
|
|
|
|
|
|
|
|
if self.has_se:
|
|
|
|
conv2 = self.se(conv2)
|
|
|
|
|
|
|
|
y = paddle.add(x=residual, y=conv2)
|
|
|
|
y = F.relu(y)
|
|
|
|
return y
|
|
|
|
|
|
|
|
|
|
|
|
class SELayer(TheseusLayer):
|
2021-05-26 14:29:56 +08:00
|
|
|
def __init__(self, num_channels, num_filters, reduction_ratio):
|
2021-05-25 15:20:07 +08:00
|
|
|
super(SELayer, self).__init__()
|
|
|
|
|
|
|
|
self.pool2d_gap = AdaptiveAvgPool2D(1)
|
|
|
|
|
|
|
|
self._num_channels = num_channels
|
|
|
|
|
|
|
|
med_ch = int(num_channels / reduction_ratio)
|
|
|
|
stdv = 1.0 / math.sqrt(num_channels * 1.0)
|
2021-05-25 15:50:50 +08:00
|
|
|
self.squeeze = nn.Linear(
|
2021-05-25 15:20:07 +08:00
|
|
|
num_channels,
|
|
|
|
med_ch,
|
|
|
|
weight_attr=ParamAttr(
|
2021-05-26 14:29:56 +08:00
|
|
|
initializer=Uniform(-stdv, stdv)))
|
2021-05-25 15:20:07 +08:00
|
|
|
|
|
|
|
stdv = 1.0 / math.sqrt(med_ch * 1.0)
|
2021-05-25 15:50:50 +08:00
|
|
|
self.excitation = nn.Linear(
|
2021-05-25 15:20:07 +08:00
|
|
|
med_ch,
|
|
|
|
num_filters,
|
|
|
|
weight_attr=ParamAttr(
|
2021-05-26 14:29:56 +08:00
|
|
|
initializer=Uniform(-stdv, stdv)))
|
2021-05-25 15:20:07 +08:00
|
|
|
|
2021-05-25 15:46:41 +08:00
|
|
|
def forward(self, input, res_dict=None):
|
2021-05-25 15:20:07 +08:00
|
|
|
pool = self.pool2d_gap(input)
|
|
|
|
pool = paddle.squeeze(pool, axis=[2, 3])
|
|
|
|
squeeze = self.squeeze(pool)
|
|
|
|
squeeze = F.relu(squeeze)
|
|
|
|
excitation = self.excitation(squeeze)
|
|
|
|
excitation = F.sigmoid(excitation)
|
|
|
|
excitation = paddle.unsqueeze(excitation, axis=[2, 3])
|
|
|
|
out = input * excitation
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
class Stage(TheseusLayer):
|
|
|
|
def __init__(self,
|
|
|
|
num_modules,
|
|
|
|
num_filters,
|
2021-05-26 16:51:42 +08:00
|
|
|
has_se=False):
|
2021-05-25 15:20:07 +08:00
|
|
|
super(Stage, self).__init__()
|
|
|
|
|
|
|
|
self._num_modules = num_modules
|
|
|
|
|
2021-05-26 14:38:40 +08:00
|
|
|
self.stage_func_list = nn.LayerList()
|
2021-05-25 15:20:07 +08:00
|
|
|
for i in range(num_modules):
|
2021-05-26 15:47:17 +08:00
|
|
|
self.stage_func_list.append(
|
|
|
|
HighResolutionModule(
|
|
|
|
num_filters=num_filters,
|
2021-05-26 16:51:42 +08:00
|
|
|
has_se=has_se))
|
2021-05-25 15:20:07 +08:00
|
|
|
|
2021-05-25 15:46:41 +08:00
|
|
|
def forward(self, input, res_dict=None):
|
2021-05-25 15:20:07 +08:00
|
|
|
out = input
|
|
|
|
for idx in range(self._num_modules):
|
|
|
|
out = self.stage_func_list[idx](out)
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
class HighResolutionModule(TheseusLayer):
|
|
|
|
def __init__(self,
|
|
|
|
num_filters,
|
2021-05-26 16:51:42 +08:00
|
|
|
has_se=False):
|
2021-05-25 15:20:07 +08:00
|
|
|
super(HighResolutionModule, self).__init__()
|
|
|
|
|
2021-05-26 15:47:17 +08:00
|
|
|
self.basic_block_list = nn.LayerList()
|
2021-05-26 00:15:43 +08:00
|
|
|
|
|
|
|
for i in range(len(num_filters)):
|
2021-05-26 15:47:17 +08:00
|
|
|
self.basic_block_list.append(
|
|
|
|
nn.Sequential(*[
|
2021-05-26 00:15:43 +08:00
|
|
|
BasicBlock(
|
2021-05-26 15:47:17 +08:00
|
|
|
num_channels=num_filters[i],
|
2021-05-26 00:15:43 +08:00
|
|
|
num_filters=num_filters[i],
|
2021-05-26 15:47:17 +08:00
|
|
|
has_se=has_se) for j in range(4)]))
|
2021-05-25 15:20:07 +08:00
|
|
|
|
|
|
|
self.fuse_func = FuseLayers(
|
|
|
|
in_channels=num_filters,
|
2021-05-26 16:51:42 +08:00
|
|
|
out_channels=num_filters)
|
2021-05-25 15:20:07 +08:00
|
|
|
|
2021-05-25 15:46:41 +08:00
|
|
|
def forward(self, input, res_dict=None):
|
2021-05-26 00:15:43 +08:00
|
|
|
outs = []
|
|
|
|
for idx, input in enumerate(input):
|
|
|
|
conv = input
|
|
|
|
basic_block_list = self.basic_block_list[idx]
|
|
|
|
for basic_block_func in basic_block_list:
|
|
|
|
conv = basic_block_func(conv)
|
|
|
|
outs.append(conv)
|
|
|
|
out = self.fuse_func(outs)
|
2021-05-25 15:20:07 +08:00
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
class FuseLayers(TheseusLayer):
|
|
|
|
def __init__(self,
|
|
|
|
in_channels,
|
2021-05-26 16:51:42 +08:00
|
|
|
out_channels):
|
2021-05-25 15:20:07 +08:00
|
|
|
super(FuseLayers, self).__init__()
|
|
|
|
|
2021-05-26 15:47:17 +08:00
|
|
|
self._actual_ch = len(in_channels)
|
2021-05-25 15:20:07 +08:00
|
|
|
self._in_channels = in_channels
|
|
|
|
|
2021-05-26 15:47:17 +08:00
|
|
|
self.residual_func_list = nn.LayerList()
|
|
|
|
for i in range(len(in_channels)):
|
2021-05-25 15:20:07 +08:00
|
|
|
for j in range(len(in_channels)):
|
|
|
|
if j > i:
|
2021-05-26 15:47:17 +08:00
|
|
|
self.residual_func_list.append(
|
2021-05-25 15:20:07 +08:00
|
|
|
ConvBNLayer(
|
|
|
|
num_channels=in_channels[j],
|
|
|
|
num_filters=out_channels[i],
|
|
|
|
filter_size=1,
|
|
|
|
stride=1,
|
2021-05-25 17:19:33 +08:00
|
|
|
act=None))
|
2021-05-25 15:20:07 +08:00
|
|
|
elif j < i:
|
|
|
|
pre_num_filters = in_channels[j]
|
|
|
|
for k in range(i - j):
|
|
|
|
if k == i - j - 1:
|
2021-05-26 15:47:17 +08:00
|
|
|
self.residual_func_list.append(
|
2021-05-25 15:20:07 +08:00
|
|
|
ConvBNLayer(
|
|
|
|
num_channels=pre_num_filters,
|
|
|
|
num_filters=out_channels[i],
|
|
|
|
filter_size=3,
|
|
|
|
stride=2,
|
2021-05-25 17:19:33 +08:00
|
|
|
act=None))
|
2021-05-25 15:20:07 +08:00
|
|
|
pre_num_filters = out_channels[i]
|
|
|
|
else:
|
2021-05-26 15:47:17 +08:00
|
|
|
self.residual_func_list.append(
|
2021-05-25 15:20:07 +08:00
|
|
|
ConvBNLayer(
|
|
|
|
num_channels=pre_num_filters,
|
|
|
|
num_filters=out_channels[j],
|
|
|
|
filter_size=3,
|
|
|
|
stride=2,
|
2021-05-25 17:19:33 +08:00
|
|
|
act="relu"))
|
2021-05-25 15:20:07 +08:00
|
|
|
pre_num_filters = out_channels[j]
|
|
|
|
|
2021-05-25 15:46:41 +08:00
|
|
|
def forward(self, input, res_dict=None):
|
2021-05-25 15:20:07 +08:00
|
|
|
outs = []
|
|
|
|
residual_func_idx = 0
|
2021-05-26 15:47:17 +08:00
|
|
|
for i in range(len(self._in_channels)):
|
2021-05-25 15:20:07 +08:00
|
|
|
residual = input[i]
|
|
|
|
for j in range(len(self._in_channels)):
|
|
|
|
if j > i:
|
|
|
|
y = self.residual_func_list[residual_func_idx](input[j])
|
|
|
|
residual_func_idx += 1
|
|
|
|
|
|
|
|
y = F.upsample(y, scale_factor=2**(j - i), mode="nearest")
|
|
|
|
residual = paddle.add(x=residual, y=y)
|
|
|
|
elif j < i:
|
|
|
|
y = input[j]
|
|
|
|
for k in range(i - j):
|
|
|
|
y = self.residual_func_list[residual_func_idx](y)
|
|
|
|
residual_func_idx += 1
|
|
|
|
|
|
|
|
residual = paddle.add(x=residual, y=y)
|
|
|
|
|
|
|
|
residual = F.relu(residual)
|
|
|
|
outs.append(residual)
|
|
|
|
|
|
|
|
return outs
|
|
|
|
|
|
|
|
|
|
|
|
class LastClsOut(TheseusLayer):
|
|
|
|
def __init__(self,
|
|
|
|
num_channel_list,
|
|
|
|
has_se,
|
2021-05-26 16:51:42 +08:00
|
|
|
num_filters_list=[32, 64, 128, 256]):
|
2021-05-25 15:20:07 +08:00
|
|
|
super(LastClsOut, self).__init__()
|
|
|
|
|
2021-05-26 14:58:09 +08:00
|
|
|
self.func_list = nn.LayerList()
|
2021-05-25 15:20:07 +08:00
|
|
|
for idx in range(len(num_channel_list)):
|
2021-05-26 14:58:09 +08:00
|
|
|
self.func_list.append(
|
2021-05-25 15:20:07 +08:00
|
|
|
BottleneckBlock(
|
|
|
|
num_channels=num_channel_list[idx],
|
|
|
|
num_filters=num_filters_list[idx],
|
|
|
|
has_se=has_se,
|
2021-05-26 14:29:56 +08:00
|
|
|
downsample=True))
|
2021-05-25 15:20:07 +08:00
|
|
|
|
2021-05-25 15:46:41 +08:00
|
|
|
def forward(self, inputs, res_dict=None):
|
2021-05-25 15:20:07 +08:00
|
|
|
outs = []
|
|
|
|
for idx, input in enumerate(inputs):
|
|
|
|
out = self.func_list[idx](input)
|
|
|
|
outs.append(out)
|
|
|
|
return outs
|
|
|
|
|
|
|
|
|
|
|
|
class HRNet(TheseusLayer):
|
2021-05-27 17:02:28 +08:00
|
|
|
'''
|
|
|
|
HRNet
|
|
|
|
Args:
|
|
|
|
width: int=18. Base channel number of HRNet.
|
|
|
|
has_se: bool=False. If 'True', add se module to HRNet.
|
|
|
|
class_num: int=1000. Output num of last fc layer.
|
|
|
|
'''
|
|
|
|
def __init__(self, width=18, has_se=False, class_num=1000):
|
2021-05-25 15:20:07 +08:00
|
|
|
super(HRNet, self).__init__()
|
|
|
|
|
|
|
|
self.width = width
|
|
|
|
self.has_se = has_se
|
2021-05-27 17:02:28 +08:00
|
|
|
self._class_num = class_num
|
2021-05-25 15:20:07 +08:00
|
|
|
|
2021-05-26 16:51:42 +08:00
|
|
|
channels_2 = [self.width, self.width * 2]
|
|
|
|
channels_3 = [self.width, self.width * 2, self.width * 4]
|
|
|
|
channels_4 = [self.width, self.width * 2, self.width * 4, self.width * 8]
|
2021-05-25 15:20:07 +08:00
|
|
|
|
|
|
|
self.conv_layer1_1 = ConvBNLayer(
|
|
|
|
num_channels=3,
|
|
|
|
num_filters=64,
|
|
|
|
filter_size=3,
|
|
|
|
stride=2,
|
2021-05-25 17:19:33 +08:00
|
|
|
act='relu')
|
2021-05-25 15:20:07 +08:00
|
|
|
|
|
|
|
self.conv_layer1_2 = ConvBNLayer(
|
|
|
|
num_channels=64,
|
|
|
|
num_filters=64,
|
|
|
|
filter_size=3,
|
|
|
|
stride=2,
|
2021-05-25 17:19:33 +08:00
|
|
|
act='relu')
|
2021-05-25 15:20:07 +08:00
|
|
|
|
2021-05-26 16:42:59 +08:00
|
|
|
self.layer1 = nn.Sequential(*[
|
2021-05-26 15:47:17 +08:00
|
|
|
BottleneckBlock(
|
2021-05-25 23:58:51 +08:00
|
|
|
num_channels=64 if i == 0 else 256,
|
|
|
|
num_filters=64,
|
|
|
|
has_se=has_se,
|
|
|
|
stride=1,
|
2021-05-26 00:02:11 +08:00
|
|
|
downsample=True if i == 0 else False)
|
2021-05-25 23:58:51 +08:00
|
|
|
for i in range(4)
|
|
|
|
])
|
2021-05-25 15:20:07 +08:00
|
|
|
|
2021-05-25 23:54:23 +08:00
|
|
|
self.tr1_1 = ConvBNLayer(
|
2021-05-25 23:37:43 +08:00
|
|
|
num_channels=256,
|
|
|
|
num_filters=width,
|
2021-05-25 23:54:23 +08:00
|
|
|
filter_size=3)
|
|
|
|
self.tr1_2 = ConvBNLayer(
|
2021-05-25 23:46:11 +08:00
|
|
|
num_channels=256,
|
2021-05-25 23:37:43 +08:00
|
|
|
num_filters=width * 2,
|
2021-05-25 23:55:12 +08:00
|
|
|
filter_size=3,
|
|
|
|
stride=2
|
|
|
|
)
|
2021-05-25 15:20:07 +08:00
|
|
|
|
|
|
|
self.st2 = Stage(
|
2021-05-26 00:31:08 +08:00
|
|
|
num_modules=1,
|
2021-05-25 15:20:07 +08:00
|
|
|
num_filters=channels_2,
|
2021-05-26 16:51:42 +08:00
|
|
|
has_se=self.has_se)
|
2021-05-25 15:20:07 +08:00
|
|
|
|
2021-05-25 23:54:23 +08:00
|
|
|
self.tr2 = ConvBNLayer(
|
2021-05-25 23:37:43 +08:00
|
|
|
num_channels=width * 2,
|
|
|
|
num_filters=width * 4,
|
2021-05-25 23:55:12 +08:00
|
|
|
filter_size=3,
|
|
|
|
stride=2
|
|
|
|
)
|
2021-05-25 15:20:07 +08:00
|
|
|
self.st3 = Stage(
|
2021-05-26 00:31:08 +08:00
|
|
|
num_modules=4,
|
2021-05-25 15:20:07 +08:00
|
|
|
num_filters=channels_3,
|
2021-05-26 16:51:42 +08:00
|
|
|
has_se=self.has_se)
|
2021-05-25 15:20:07 +08:00
|
|
|
|
2021-05-25 23:54:23 +08:00
|
|
|
self.tr3 = ConvBNLayer(
|
2021-05-25 23:37:43 +08:00
|
|
|
num_channels=width * 4,
|
|
|
|
num_filters=width * 8,
|
2021-05-25 23:55:12 +08:00
|
|
|
filter_size=3,
|
|
|
|
stride=2
|
|
|
|
)
|
2021-05-25 23:37:43 +08:00
|
|
|
|
2021-05-25 15:20:07 +08:00
|
|
|
self.st4 = Stage(
|
2021-05-26 00:31:08 +08:00
|
|
|
num_modules=3,
|
2021-05-25 15:20:07 +08:00
|
|
|
num_filters=channels_4,
|
2021-05-26 16:51:42 +08:00
|
|
|
has_se=self.has_se)
|
2021-05-25 15:20:07 +08:00
|
|
|
|
|
|
|
# classification
|
|
|
|
num_filters_list = [32, 64, 128, 256]
|
|
|
|
self.last_cls = LastClsOut(
|
|
|
|
num_channel_list=channels_4,
|
|
|
|
has_se=self.has_se,
|
2021-05-26 16:51:42 +08:00
|
|
|
num_filters_list=num_filters_list)
|
2021-05-25 15:20:07 +08:00
|
|
|
|
|
|
|
last_num_filters = [256, 512, 1024]
|
2021-05-26 14:29:56 +08:00
|
|
|
self.cls_head_conv_list = nn.LayerList()
|
2021-05-25 15:20:07 +08:00
|
|
|
for idx in range(3):
|
|
|
|
self.cls_head_conv_list.append(
|
|
|
|
ConvBNLayer(
|
|
|
|
num_channels=num_filters_list[idx] * 4,
|
|
|
|
num_filters=last_num_filters[idx],
|
|
|
|
filter_size=3,
|
2021-05-26 14:29:56 +08:00
|
|
|
stride=2))
|
2021-05-25 15:20:07 +08:00
|
|
|
|
|
|
|
self.conv_last = ConvBNLayer(
|
|
|
|
num_channels=1024,
|
|
|
|
num_filters=2048,
|
|
|
|
filter_size=1,
|
2021-05-25 17:19:33 +08:00
|
|
|
stride=1)
|
2021-05-25 15:20:07 +08:00
|
|
|
|
|
|
|
self.pool2d_avg = AdaptiveAvgPool2D(1)
|
|
|
|
|
|
|
|
stdv = 1.0 / math.sqrt(2048 * 1.0)
|
|
|
|
|
2021-05-25 15:50:50 +08:00
|
|
|
self.out = nn.Linear(
|
2021-05-25 15:20:07 +08:00
|
|
|
2048,
|
2021-05-27 17:02:28 +08:00
|
|
|
class_num,
|
2021-05-25 15:20:07 +08:00
|
|
|
weight_attr=ParamAttr(
|
2021-05-26 14:29:56 +08:00
|
|
|
initializer=Uniform(-stdv, stdv)))
|
2021-05-25 15:20:07 +08:00
|
|
|
|
2021-05-25 15:46:41 +08:00
|
|
|
def forward(self, input, res_dict=None):
|
2021-05-25 15:20:07 +08:00
|
|
|
conv1 = self.conv_layer1_1(input)
|
|
|
|
conv2 = self.conv_layer1_2(conv1)
|
|
|
|
|
2021-05-26 00:02:11 +08:00
|
|
|
la1 = self.layer1(conv2)
|
2021-05-25 15:20:07 +08:00
|
|
|
|
2021-05-25 23:44:11 +08:00
|
|
|
tr1_1 = self.tr1_1(la1)
|
|
|
|
tr1_2 = self.tr1_2(la1)
|
2021-05-25 23:43:41 +08:00
|
|
|
st2 = self.st2([tr1_1, tr1_2])
|
2021-05-25 15:20:07 +08:00
|
|
|
|
2021-05-25 23:43:41 +08:00
|
|
|
tr2 = self.tr2(st2[-1])
|
|
|
|
st2.append(tr2)
|
|
|
|
st3 = self.st3(st2)
|
2021-05-25 15:20:07 +08:00
|
|
|
|
2021-05-25 23:43:41 +08:00
|
|
|
tr3 = self.tr3(st3[-1])
|
|
|
|
st3.append(tr3)
|
|
|
|
st4 = self.st4(st3)
|
2021-05-25 15:20:07 +08:00
|
|
|
|
|
|
|
last_cls = self.last_cls(st4)
|
|
|
|
|
|
|
|
y = last_cls[0]
|
|
|
|
for idx in range(3):
|
|
|
|
y = paddle.add(last_cls[idx + 1], self.cls_head_conv_list[idx](y))
|
|
|
|
|
|
|
|
y = self.conv_last(y)
|
|
|
|
y = self.pool2d_avg(y)
|
|
|
|
y = paddle.reshape(y, shape=[-1, y.shape[1]])
|
|
|
|
y = self.out(y)
|
|
|
|
return y
|
|
|
|
|
|
|
|
|
|
|
|
def HRNet_W18_C(**args):
|
|
|
|
model = HRNet(width=18, **args)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def HRNet_W30_C(**args):
|
|
|
|
model = HRNet(width=30, **args)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def HRNet_W32_C(**args):
|
|
|
|
model = HRNet(width=32, **args)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def HRNet_W40_C(**args):
|
|
|
|
model = HRNet(width=40, **args)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def HRNet_W44_C(**args):
|
|
|
|
model = HRNet(width=44, **args)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def HRNet_W48_C(**args):
|
|
|
|
model = HRNet(width=48, **args)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def HRNet_W60_C(**args):
|
|
|
|
model = HRNet(width=60, **args)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def HRNet_W64_C(**args):
|
|
|
|
model = HRNet(width=64, **args)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def SE_HRNet_W18_C(**args):
|
|
|
|
model = HRNet(width=18, has_se=True, **args)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def SE_HRNet_W30_C(**args):
|
|
|
|
model = HRNet(width=30, has_se=True, **args)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def SE_HRNet_W32_C(**args):
|
|
|
|
model = HRNet(width=32, has_se=True, **args)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def SE_HRNet_W40_C(**args):
|
|
|
|
model = HRNet(width=40, has_se=True, **args)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def SE_HRNet_W44_C(**args):
|
|
|
|
model = HRNet(width=44, has_se=True, **args)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def SE_HRNet_W48_C(**args):
|
|
|
|
model = HRNet(width=48, has_se=True, **args)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def SE_HRNet_W60_C(**args):
|
|
|
|
model = HRNet(width=60, has_se=True, **args)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def SE_HRNet_W64_C(**args):
|
|
|
|
model = HRNet(width=64, has_se=True, **args)
|
|
|
|
return model
|