124 lines
3.8 KiB
Python
124 lines
3.8 KiB
Python
|
# encoding: utf-8
|
||
|
|
||
|
import numpy as np
|
||
|
from PIL import Image, ImageOps, ImageEnhance
|
||
|
|
||
|
|
||
|
|
||
|
def int_parameter(level, maxval):
|
||
|
"""Helper function to scale `val` between 0 and maxval .
|
||
|
Args:
|
||
|
level: Level of the operation that will be between [0, `PARAMETER_MAX`].
|
||
|
maxval: Maximum value that the operation can have. This will be scaled to
|
||
|
level/PARAMETER_MAX.
|
||
|
Returns:
|
||
|
An int that results from scaling `maxval` according to `level`.
|
||
|
"""
|
||
|
return int(level * maxval / 10)
|
||
|
|
||
|
|
||
|
def float_parameter(level, maxval):
|
||
|
"""Helper function to scale `val` between 0 and maxval.
|
||
|
Args:
|
||
|
level: Level of the operation that will be between [0, `PARAMETER_MAX`].
|
||
|
maxval: Maximum value that the operation can have. This will be scaled to
|
||
|
level/PARAMETER_MAX.
|
||
|
Returns:
|
||
|
A float that results from scaling `maxval` according to `level`.
|
||
|
"""
|
||
|
return float(level) * maxval / 10.
|
||
|
|
||
|
|
||
|
def sample_level(n):
|
||
|
return np.random.uniform(low=0.1, high=n)
|
||
|
|
||
|
|
||
|
def autocontrast(pil_img, *args):
|
||
|
return ImageOps.autocontrast(pil_img)
|
||
|
|
||
|
|
||
|
def equalize(pil_img, *args):
|
||
|
return ImageOps.equalize(pil_img)
|
||
|
|
||
|
|
||
|
def posterize(pil_img, level, *args):
|
||
|
level = int_parameter(sample_level(level), 4)
|
||
|
return ImageOps.posterize(pil_img, 4 - level)
|
||
|
|
||
|
|
||
|
def rotate(pil_img, level, *args):
|
||
|
degrees = int_parameter(sample_level(level), 30)
|
||
|
if np.random.uniform() > 0.5:
|
||
|
degrees = -degrees
|
||
|
return pil_img.rotate(degrees, resample=Image.BILINEAR)
|
||
|
|
||
|
|
||
|
def solarize(pil_img, level, *args):
|
||
|
level = int_parameter(sample_level(level), 256)
|
||
|
return ImageOps.solarize(pil_img, 256 - level)
|
||
|
|
||
|
|
||
|
def shear_x(pil_img, level):
|
||
|
level = float_parameter(sample_level(level), 0.3)
|
||
|
if np.random.uniform() > 0.5:
|
||
|
level = -level
|
||
|
return pil_img.transform(pil_img.size,
|
||
|
Image.AFFINE, (1, level, 0, 0, 1, 0),
|
||
|
resample=Image.BILINEAR)
|
||
|
|
||
|
|
||
|
def shear_y(pil_img, level):
|
||
|
level = float_parameter(sample_level(level), 0.3)
|
||
|
if np.random.uniform() > 0.5:
|
||
|
level = -level
|
||
|
return pil_img.transform(pil_img.size,
|
||
|
Image.AFFINE, (1, 0, 0, level, 1, 0),
|
||
|
resample=Image.BILINEAR)
|
||
|
|
||
|
|
||
|
def translate_x(pil_img, level):
|
||
|
level = int_parameter(sample_level(level), pil_img.size[0] / 3)
|
||
|
if np.random.random() > 0.5:
|
||
|
level = -level
|
||
|
return pil_img.transform(pil_img.size,
|
||
|
Image.AFFINE, (1, 0, level, 0, 1, 0),
|
||
|
resample=Image.BILINEAR)
|
||
|
|
||
|
|
||
|
def translate_y(pil_img, level):
|
||
|
level = int_parameter(sample_level(level), pil_img.size[1] / 3)
|
||
|
if np.random.random() > 0.5:
|
||
|
level = -level
|
||
|
return pil_img.transform(pil_img.size,
|
||
|
Image.AFFINE, (1, 0, 0, 0, 1, level),
|
||
|
resample=Image.BILINEAR)
|
||
|
|
||
|
|
||
|
# operation that overlaps with ImageNet-C's test set
|
||
|
def color(pil_img, level, *args):
|
||
|
level = float_parameter(sample_level(level), 1.8) + 0.1
|
||
|
return ImageEnhance.Color(pil_img).enhance(level)
|
||
|
|
||
|
|
||
|
# operation that overlaps with ImageNet-C's test set
|
||
|
def contrast(pil_img, level, *args):
|
||
|
level = float_parameter(sample_level(level), 1.8) + 0.1
|
||
|
return ImageEnhance.Contrast(pil_img).enhance(level)
|
||
|
|
||
|
|
||
|
# operation that overlaps with ImageNet-C's test set
|
||
|
def brightness(pil_img, level, *args):
|
||
|
level = float_parameter(sample_level(level), 1.8) + 0.1
|
||
|
return ImageEnhance.Brightness(pil_img).enhance(level)
|
||
|
|
||
|
|
||
|
# operation that overlaps with ImageNet-C's test set
|
||
|
def sharpness(pil_img, level, *args):
|
||
|
level = float_parameter(sample_level(level), 1.8) + 0.1
|
||
|
return ImageEnhance.Sharpness(pil_img).enhance(level)
|
||
|
|
||
|
|
||
|
augmentations = [
|
||
|
autocontrast, equalize, posterize, rotate, solarize, shear_x, shear_y,
|
||
|
translate_x, translate_y
|
||
|
]
|