2020-04-09 02:16:30 +08:00
|
|
|
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
#
|
|
|
|
#Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
#you may not use this file except in compliance with the License.
|
|
|
|
#You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
#Unless required by applicable law or agreed to in writing, software
|
|
|
|
#distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
#See the License for the specific language governing permissions and
|
|
|
|
#limitations under the License.
|
|
|
|
|
|
|
|
from __future__ import absolute_import
|
|
|
|
from __future__ import division
|
|
|
|
from __future__ import print_function
|
|
|
|
|
|
|
|
import sys
|
|
|
|
import math
|
|
|
|
|
|
|
|
import paddle.fluid as fluid
|
|
|
|
import paddle.fluid.layers.ops as ops
|
|
|
|
from paddle.fluid.layers.learning_rate_scheduler import _decay_step_counter
|
|
|
|
|
|
|
|
__all__ = ['LearningRateBuilder']
|
|
|
|
|
|
|
|
|
|
|
|
class Linear(object):
|
|
|
|
"""
|
|
|
|
Linear learning rate decay
|
|
|
|
|
|
|
|
Args:
|
|
|
|
lr(float): initial learning rate
|
|
|
|
steps(int): total decay steps
|
|
|
|
end_lr(float): end learning rate, default: 0.0.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, lr, steps, end_lr=0.0, **kwargs):
|
|
|
|
super(Linear, self).__init__()
|
|
|
|
self.lr = lr
|
|
|
|
self.steps = steps
|
|
|
|
self.end_lr = end_lr
|
|
|
|
|
|
|
|
def __call__(self):
|
|
|
|
learning_rate = fluid.layers.polynomial_decay(
|
|
|
|
self.lr, self.steps, self.end_lr, power=1)
|
|
|
|
return learning_rate
|
|
|
|
|
|
|
|
|
|
|
|
class Cosine(object):
|
|
|
|
"""
|
|
|
|
Cosine learning rate decay
|
|
|
|
lr = 0.05 * (math.cos(epoch * (math.pi / epochs)) + 1)
|
|
|
|
|
|
|
|
Args:
|
|
|
|
lr(float): initial learning rate
|
|
|
|
step_each_epoch(int): steps each epoch
|
|
|
|
epochs(int): total training epochs
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, lr, step_each_epoch, epochs, **kwargs):
|
|
|
|
super(Cosine, self).__init__()
|
|
|
|
self.lr = lr
|
|
|
|
self.step_each_epoch = step_each_epoch
|
|
|
|
self.epochs = epochs
|
|
|
|
|
|
|
|
def __call__(self):
|
|
|
|
learning_rate = fluid.layers.cosine_decay(
|
|
|
|
learning_rate=self.lr,
|
|
|
|
step_each_epoch=self.step_each_epoch,
|
|
|
|
epochs=self.epochs)
|
|
|
|
return learning_rate
|
|
|
|
|
|
|
|
|
|
|
|
class Piecewise(object):
|
|
|
|
"""
|
|
|
|
Piecewise learning rate decay
|
|
|
|
|
|
|
|
Args:
|
|
|
|
lr(float): initial learning rate
|
|
|
|
step_each_epoch(int): steps each epoch
|
|
|
|
decay_epochs(list): piecewise decay epochs
|
|
|
|
gamma(float): decay factor
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, lr, step_each_epoch, decay_epochs, gamma=0.1, **kwargs):
|
|
|
|
super(Piecewise, self).__init__()
|
|
|
|
self.bd = [step_each_epoch * e for e in decay_epochs]
|
|
|
|
self.lr = [lr * (gamma**i) for i in range(len(self.bd) + 1)]
|
|
|
|
|
|
|
|
def __call__(self):
|
|
|
|
learning_rate = fluid.layers.piecewise_decay(self.bd, self.lr)
|
|
|
|
return learning_rate
|
|
|
|
|
|
|
|
|
|
|
|
class CosineWarmup(object):
|
|
|
|
"""
|
|
|
|
Cosine learning rate decay with warmup
|
|
|
|
[0, warmup_epoch): linear warmup
|
|
|
|
[warmup_epoch, epochs): cosine decay
|
|
|
|
|
|
|
|
Args:
|
|
|
|
lr(float): initial learning rate
|
|
|
|
step_each_epoch(int): steps each epoch
|
|
|
|
epochs(int): total training epochs
|
|
|
|
warmup_epoch(int): epoch num of warmup
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, lr, step_each_epoch, epochs, warmup_epoch=5, **kwargs):
|
|
|
|
super(CosineWarmup, self).__init__()
|
|
|
|
self.lr = lr
|
|
|
|
self.step_each_epoch = step_each_epoch
|
|
|
|
self.epochs = epochs
|
|
|
|
self.warmup_epoch = fluid.layers.fill_constant(
|
|
|
|
shape=[1],
|
|
|
|
value=float(warmup_epoch),
|
|
|
|
dtype='float32',
|
|
|
|
force_cpu=True)
|
|
|
|
|
|
|
|
def __call__(self):
|
|
|
|
global_step = _decay_step_counter()
|
|
|
|
learning_rate = fluid.layers.tensor.create_global_var(
|
|
|
|
shape=[1],
|
|
|
|
value=0.0,
|
|
|
|
dtype='float32',
|
|
|
|
persistable=True,
|
|
|
|
name="learning_rate")
|
|
|
|
epoch = ops.floor(global_step / self.step_each_epoch)
|
|
|
|
with fluid.layers.control_flow.Switch() as switch:
|
|
|
|
with switch.case(epoch < self.warmup_epoch):
|
|
|
|
decayed_lr = self.lr * \
|
|
|
|
(global_step / (self.step_each_epoch * self.warmup_epoch))
|
|
|
|
fluid.layers.tensor.assign(
|
|
|
|
input=decayed_lr, output=learning_rate)
|
|
|
|
with switch.default():
|
|
|
|
current_step = global_step - self.warmup_epoch * self.step_each_epoch
|
|
|
|
total_step = (
|
|
|
|
self.epochs - self.warmup_epoch) * self.step_each_epoch
|
|
|
|
decayed_lr = self.lr * \
|
|
|
|
(ops.cos(current_step * math.pi / total_step) + 1) / 2
|
|
|
|
fluid.layers.tensor.assign(
|
|
|
|
input=decayed_lr, output=learning_rate)
|
|
|
|
|
|
|
|
return learning_rate
|
|
|
|
|
|
|
|
|
2020-05-06 19:17:39 +08:00
|
|
|
class ExponentialWarmup(object):
|
|
|
|
|
|
|
|
"""
|
|
|
|
Exponential learning rate decay with warmup
|
|
|
|
[0, warmup_epoch): linear warmup
|
|
|
|
[warmup_epoch, epochs): Exponential decay
|
|
|
|
|
|
|
|
Args:
|
|
|
|
lr(float): initial learning rate
|
|
|
|
step_each_epoch(int): steps each epoch
|
|
|
|
decay_epochs(float): decay epochs
|
|
|
|
decay_rate(float): decay rate
|
|
|
|
warmup_epoch(int): epoch num of warmup
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, lr, step_each_epoch, decay_epochs=2.4, decay_rate=0.97, warmup_epoch=5, **kwargs):
|
|
|
|
super(CosineWarmup, self).__init__()
|
|
|
|
self.lr = lr
|
|
|
|
self.step_each_epoch = step_each_epoch
|
|
|
|
self.decay_epochs = decay_epochs * self.step_each_epoch
|
|
|
|
self.decay_rate = decay_rate
|
|
|
|
self.warmup_epoch = fluid.layers.fill_constant(
|
|
|
|
shape=[1],
|
|
|
|
value=float(warmup_epoch),
|
|
|
|
dtype='float32',
|
|
|
|
force_cpu=True)
|
|
|
|
|
|
|
|
def __call__(self):
|
|
|
|
global_step = _decay_step_counter()
|
|
|
|
learning_rate = fluid.layers.tensor.create_global_var(
|
|
|
|
shape=[1],
|
|
|
|
value=0.0,
|
|
|
|
dtype='float32',
|
|
|
|
persistable=True,
|
|
|
|
name="learning_rate")
|
|
|
|
|
|
|
|
epoch = ops.floor(global_step / self.step_each_epoch)
|
|
|
|
with fluid.layers.control_flow.Switch() as switch:
|
|
|
|
with switch.case(epoch < self.warmup_epoch):
|
|
|
|
decayed_lr = self.lr * \
|
|
|
|
(global_step / (self.step_each_epoch * self.warmup_epoch))
|
|
|
|
fluid.layers.tensor.assign(
|
|
|
|
input=decayed_lr, output=learning_rate)
|
|
|
|
with switch.default():
|
|
|
|
rest_step = global_step - self.warmup_epoch * self.step_each_epoch
|
|
|
|
div_res = ops.floor(rest_step / self.decay_epochs)
|
|
|
|
|
|
|
|
decayed_lr = self.lr*(self.decay_rate**div_res)
|
|
|
|
fluid.layers.tensor.assign(
|
|
|
|
input=decayed_lr, output=learning_rate)
|
|
|
|
|
|
|
|
return learning_rate
|
|
|
|
|
2020-04-09 02:16:30 +08:00
|
|
|
class LearningRateBuilder():
|
|
|
|
"""
|
|
|
|
Build learning rate variable
|
|
|
|
https://www.paddlepaddle.org.cn/documentation/docs/zh/api_cn/layers_cn.html
|
|
|
|
|
|
|
|
Args:
|
|
|
|
function(str): class name of learning rate
|
|
|
|
params(dict): parameters used for init the class
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
function='Linear',
|
|
|
|
params={'lr': 0.1,
|
|
|
|
'steps': 100,
|
|
|
|
'end_lr': 0.0}):
|
|
|
|
self.function = function
|
|
|
|
self.params = params
|
|
|
|
|
|
|
|
def __call__(self):
|
|
|
|
mod = sys.modules[__name__]
|
|
|
|
lr = getattr(mod, self.function)(**self.params)()
|
|
|
|
return lr
|