PaddleClas/ppcls/optimizer/learning_rate.py

223 lines
7.2 KiB
Python
Raw Normal View History

2020-04-09 02:16:30 +08:00
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import sys
import math
import paddle.fluid as fluid
import paddle.fluid.layers.ops as ops
from paddle.fluid.layers.learning_rate_scheduler import _decay_step_counter
__all__ = ['LearningRateBuilder']
class Linear(object):
"""
Linear learning rate decay
Args:
lr(float): initial learning rate
steps(int): total decay steps
end_lr(float): end learning rate, default: 0.0.
"""
def __init__(self, lr, steps, end_lr=0.0, **kwargs):
super(Linear, self).__init__()
self.lr = lr
self.steps = steps
self.end_lr = end_lr
def __call__(self):
learning_rate = fluid.layers.polynomial_decay(
self.lr, self.steps, self.end_lr, power=1)
return learning_rate
class Cosine(object):
"""
Cosine learning rate decay
lr = 0.05 * (math.cos(epoch * (math.pi / epochs)) + 1)
Args:
lr(float): initial learning rate
step_each_epoch(int): steps each epoch
epochs(int): total training epochs
"""
def __init__(self, lr, step_each_epoch, epochs, **kwargs):
super(Cosine, self).__init__()
self.lr = lr
self.step_each_epoch = step_each_epoch
self.epochs = epochs
def __call__(self):
learning_rate = fluid.layers.cosine_decay(
learning_rate=self.lr,
step_each_epoch=self.step_each_epoch,
epochs=self.epochs)
return learning_rate
class Piecewise(object):
"""
Piecewise learning rate decay
Args:
lr(float): initial learning rate
step_each_epoch(int): steps each epoch
decay_epochs(list): piecewise decay epochs
gamma(float): decay factor
"""
def __init__(self, lr, step_each_epoch, decay_epochs, gamma=0.1, **kwargs):
super(Piecewise, self).__init__()
self.bd = [step_each_epoch * e for e in decay_epochs]
self.lr = [lr * (gamma**i) for i in range(len(self.bd) + 1)]
def __call__(self):
learning_rate = fluid.layers.piecewise_decay(self.bd, self.lr)
return learning_rate
class CosineWarmup(object):
"""
Cosine learning rate decay with warmup
[0, warmup_epoch): linear warmup
[warmup_epoch, epochs): cosine decay
Args:
lr(float): initial learning rate
step_each_epoch(int): steps each epoch
epochs(int): total training epochs
warmup_epoch(int): epoch num of warmup
"""
def __init__(self, lr, step_each_epoch, epochs, warmup_epoch=5, **kwargs):
super(CosineWarmup, self).__init__()
self.lr = lr
self.step_each_epoch = step_each_epoch
self.epochs = epochs
self.warmup_epoch = fluid.layers.fill_constant(
shape=[1],
value=float(warmup_epoch),
dtype='float32',
force_cpu=True)
def __call__(self):
global_step = _decay_step_counter()
learning_rate = fluid.layers.tensor.create_global_var(
shape=[1],
value=0.0,
dtype='float32',
persistable=True,
name="learning_rate")
epoch = ops.floor(global_step / self.step_each_epoch)
with fluid.layers.control_flow.Switch() as switch:
with switch.case(epoch < self.warmup_epoch):
decayed_lr = self.lr * \
(global_step / (self.step_each_epoch * self.warmup_epoch))
fluid.layers.tensor.assign(
input=decayed_lr, output=learning_rate)
with switch.default():
current_step = global_step - self.warmup_epoch * self.step_each_epoch
total_step = (
self.epochs - self.warmup_epoch) * self.step_each_epoch
decayed_lr = self.lr * \
(ops.cos(current_step * math.pi / total_step) + 1) / 2
fluid.layers.tensor.assign(
input=decayed_lr, output=learning_rate)
return learning_rate
2020-05-06 19:17:39 +08:00
class ExponentialWarmup(object):
"""
Exponential learning rate decay with warmup
[0, warmup_epoch): linear warmup
[warmup_epoch, epochs): Exponential decay
Args:
lr(float): initial learning rate
step_each_epoch(int): steps each epoch
decay_epochs(float): decay epochs
decay_rate(float): decay rate
warmup_epoch(int): epoch num of warmup
"""
def __init__(self, lr, step_each_epoch, decay_epochs=2.4, decay_rate=0.97, warmup_epoch=5, **kwargs):
super(CosineWarmup, self).__init__()
self.lr = lr
self.step_each_epoch = step_each_epoch
self.decay_epochs = decay_epochs * self.step_each_epoch
self.decay_rate = decay_rate
self.warmup_epoch = fluid.layers.fill_constant(
shape=[1],
value=float(warmup_epoch),
dtype='float32',
force_cpu=True)
def __call__(self):
global_step = _decay_step_counter()
learning_rate = fluid.layers.tensor.create_global_var(
shape=[1],
value=0.0,
dtype='float32',
persistable=True,
name="learning_rate")
epoch = ops.floor(global_step / self.step_each_epoch)
with fluid.layers.control_flow.Switch() as switch:
with switch.case(epoch < self.warmup_epoch):
decayed_lr = self.lr * \
(global_step / (self.step_each_epoch * self.warmup_epoch))
fluid.layers.tensor.assign(
input=decayed_lr, output=learning_rate)
with switch.default():
rest_step = global_step - self.warmup_epoch * self.step_each_epoch
div_res = ops.floor(rest_step / self.decay_epochs)
decayed_lr = self.lr*(self.decay_rate**div_res)
fluid.layers.tensor.assign(
input=decayed_lr, output=learning_rate)
return learning_rate
2020-04-09 02:16:30 +08:00
class LearningRateBuilder():
"""
Build learning rate variable
https://www.paddlepaddle.org.cn/documentation/docs/zh/api_cn/layers_cn.html
Args:
function(str): class name of learning rate
params(dict): parameters used for init the class
"""
def __init__(self,
function='Linear',
params={'lr': 0.1,
'steps': 100,
'end_lr': 0.0}):
self.function = function
self.params = params
def __call__(self):
mod = sys.modules[__name__]
lr = getattr(mod, self.function)(**self.params)()
return lr