PaddleClas/ppcls/utils/save_load.py

157 lines
5.8 KiB
Python
Raw Normal View History

2020-04-09 02:16:30 +08:00
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
2020-05-03 17:21:07 +08:00
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
2020-04-09 02:16:30 +08:00
#
# http://www.apache.org/licenses/LICENSE-2.0
#
2020-05-03 17:21:07 +08:00
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
2020-04-09 02:16:30 +08:00
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
2020-04-11 01:20:33 +08:00
import errno
2020-04-09 02:16:30 +08:00
import os
2020-05-04 15:01:22 +08:00
import re
2020-04-09 02:16:30 +08:00
import shutil
2020-04-11 01:20:33 +08:00
import tempfile
2020-04-09 02:16:30 +08:00
2020-09-15 17:43:19 +08:00
import paddle
from paddle.static import load_program_state
2020-04-09 02:16:30 +08:00
from ppcls.utils import logger
2020-08-28 17:43:27 +08:00
__all__ = ['init_model', 'save_model', 'load_dygraph_pretrain']
2020-04-09 02:16:30 +08:00
def _mkdir_if_not_exist(path):
"""
2020-04-11 01:21:31 +08:00
mkdir if not exists, ignore the exception when multiprocess mkdir together
2020-04-09 02:16:30 +08:00
"""
2020-04-11 01:20:33 +08:00
if not os.path.exists(path):
try:
os.makedirs(path)
except OSError as e:
if e.errno == errno.EEXIST and os.path.isdir(path):
logger.warning(
'be happy if some process has already created {}'.format(
path))
else:
2020-04-11 01:22:14 +08:00
raise OSError('Failed to mkdir {}'.format(path))
2020-04-09 02:16:30 +08:00
2020-09-03 11:24:22 +08:00
def load_dygraph_pretrain(model, path=None, load_static_weights=False):
2020-04-09 02:16:30 +08:00
if not (os.path.isdir(path) or os.path.exists(path + '.pdparams')):
raise ValueError("Model pretrain path {} does not "
"exists.".format(path))
2020-08-28 17:43:27 +08:00
if load_static_weights:
2020-09-15 17:43:19 +08:00
pre_state_dict = load_program_state(path)
2020-08-28 17:43:27 +08:00
param_state_dict = {}
model_dict = model.state_dict()
for key in model_dict.keys():
weight_name = model_dict[key].name
if weight_name in pre_state_dict.keys():
2020-11-21 17:46:53 +08:00
logger.info('Load weight: {}, shape: {}'.format(
2020-08-28 17:43:27 +08:00
weight_name, pre_state_dict[weight_name].shape))
param_state_dict[key] = pre_state_dict[weight_name]
else:
param_state_dict[key] = model_dict[key]
model.set_dict(param_state_dict)
return
2020-04-09 02:16:30 +08:00
param_state_dict = paddle.load(path + ".pdparams")
2020-08-28 17:43:27 +08:00
model.set_dict(param_state_dict)
return
2020-04-09 02:16:30 +08:00
2020-09-03 11:22:39 +08:00
def load_distillation_model(model, pretrained_model, load_static_weights):
logger.info("In distillation mode, teacher model will be "
2020-09-03 11:24:22 +08:00
"loaded firstly before student model.")
assert len(pretrained_model
) == 2, "pretrained_model length should be 2 but got {}".format(
len(pretrained_model))
assert len(
load_static_weights
) == 2, "load_static_weights length should be 2 but got {}".format(
len(load_static_weights))
teacher = model.teacher if hasattr(model,
"teacher") else model._layers.teacher
student = model.student if hasattr(model,
"student") else model._layers.student
2020-09-03 11:22:39 +08:00
load_dygraph_pretrain(
teacher,
2020-09-03 11:22:39 +08:00
path=pretrained_model[0],
load_static_weights=load_static_weights[0])
logger.info(
logger.coloring("Finish initing teacher model from {}".format(
pretrained_model), "HEADER"))
load_dygraph_pretrain(
student,
2020-09-03 11:22:39 +08:00
path=pretrained_model[1],
load_static_weights=load_static_weights[1])
logger.info(
logger.coloring("Finish initing student model from {}".format(
pretrained_model), "HEADER"))
2020-09-03 11:24:22 +08:00
2020-08-28 17:43:27 +08:00
def init_model(config, net, optimizer=None):
2020-04-09 02:16:30 +08:00
"""
2020-04-09 23:06:58 +08:00
load model from checkpoint or pretrained_model
2020-04-09 02:16:30 +08:00
"""
checkpoints = config.get('checkpoints')
2020-04-09 23:06:58 +08:00
if checkpoints:
2020-06-12 10:55:05 +08:00
assert os.path.exists(checkpoints + ".pdparams"), \
"Given dir {}.pdparams not exist.".format(checkpoints)
assert os.path.exists(checkpoints + ".pdopt"), \
"Given dir {}.pdopt not exist.".format(checkpoints)
para_dict = paddle.load(checkpoints + ".pdparams")
opti_dict = paddle.load(checkpoints + ".pdopt")
2020-06-12 10:55:05 +08:00
net.set_dict(para_dict)
2020-10-22 14:12:03 +08:00
optimizer.set_state_dict(opti_dict)
2020-06-12 10:55:05 +08:00
logger.info(
logger.coloring("Finish initing model from {}".format(checkpoints),
"HEADER"))
2020-04-09 02:16:30 +08:00
return
pretrained_model = config.get('pretrained_model')
2020-08-28 17:43:27 +08:00
load_static_weights = config.get('load_static_weights', False)
use_distillation = config.get('use_distillation', False)
2020-04-09 23:06:58 +08:00
if pretrained_model:
2020-09-03 11:24:22 +08:00
if isinstance(pretrained_model,
list): # load distillation pretrained model
2020-09-03 11:22:39 +08:00
if not isinstance(load_static_weights, list):
2020-09-03 11:24:22 +08:00
load_static_weights = [load_static_weights] * len(
pretrained_model)
2020-09-03 11:22:39 +08:00
load_distillation_model(net, pretrained_model, load_static_weights)
2020-09-03 11:24:22 +08:00
else: # common load
2020-08-28 17:43:27 +08:00
load_dygraph_pretrain(
2020-09-03 11:24:22 +08:00
net,
path=pretrained_model,
load_static_weights=load_static_weights)
2020-08-28 17:43:27 +08:00
logger.info(
logger.coloring("Finish initing model from {}".format(
pretrained_model), "HEADER"))
2020-04-09 02:16:30 +08:00
2020-06-12 10:55:05 +08:00
def save_model(net, optimizer, model_path, epoch_id, prefix='ppcls'):
2020-04-09 02:16:30 +08:00
"""
2020-04-09 23:06:58 +08:00
save model to the target path
2020-04-09 02:16:30 +08:00
"""
if paddle.distributed.get_rank() != 0:
return
2020-04-09 02:16:30 +08:00
model_path = os.path.join(model_path, str(epoch_id))
_mkdir_if_not_exist(model_path)
model_prefix = os.path.join(model_path, prefix)
2020-06-12 10:55:05 +08:00
paddle.save(net.state_dict(), model_prefix + ".pdparams")
paddle.save(optimizer.state_dict(), model_prefix + ".pdopt")
2020-06-12 10:55:05 +08:00
logger.info(
logger.coloring("Already save model in {}".format(model_path),
"HEADER"))