2022-01-25 19:26:45 +08:00
|
|
|
|
# PP-ShiTu在Paddle-Lite端侧部署
|
2022-01-22 20:17:59 +08:00
|
|
|
|
|
2022-01-27 20:31:11 +08:00
|
|
|
|
本教程将介绍基于[Paddle Lite](https://github.com/PaddlePaddle/Paddle-Lite) 在移动端部署PaddleClas PP-ShiTu模型的详细步骤。
|
2022-01-22 20:17:59 +08:00
|
|
|
|
|
|
|
|
|
Paddle Lite是飞桨轻量化推理引擎,为手机、IOT端提供高效推理能力,并广泛整合跨平台硬件,为端侧部署及应用落地问题提供轻量化的部署方案。
|
|
|
|
|
|
|
|
|
|
## 1. 准备环境
|
|
|
|
|
|
|
|
|
|
### 运行准备
|
|
|
|
|
- 电脑(编译Paddle Lite)
|
|
|
|
|
- 安卓手机(armv7或armv8)
|
|
|
|
|
|
|
|
|
|
### 1.1 准备交叉编译环境
|
2022-01-27 20:31:11 +08:00
|
|
|
|
交叉编译环境用于编译 Paddle Lite 和 PaddleClas 的PP-ShiTu Lite demo。
|
2022-01-22 20:17:59 +08:00
|
|
|
|
支持多种开发环境,不同开发环境的编译流程请参考对应文档,请确保安装完成Java jdk、Android NDK(R17以上)。
|
|
|
|
|
|
|
|
|
|
1. [Docker](https://paddle-lite.readthedocs.io/zh/latest/source_compile/compile_env.html#docker)
|
|
|
|
|
2. [Linux](https://paddle-lite.readthedocs.io/zh/latest/source_compile/compile_env.html#linux)
|
|
|
|
|
3. [MAC OS](https://paddle-lite.readthedocs.io/zh/latest/source_compile/compile_env.html#mac-os)
|
|
|
|
|
|
2022-01-27 20:31:11 +08:00
|
|
|
|
```shell
|
2022-01-27 20:34:05 +08:00
|
|
|
|
# 配置完成交叉编译环境后,更新环境变量
|
|
|
|
|
# for docker、Linux
|
2022-01-27 20:31:11 +08:00
|
|
|
|
source ~/.bashrc
|
2022-01-27 20:34:05 +08:00
|
|
|
|
# for Mac OS
|
|
|
|
|
source ~/.bash_profile
|
2022-01-27 20:31:11 +08:00
|
|
|
|
```
|
|
|
|
|
|
2022-01-22 20:17:59 +08:00
|
|
|
|
### 1.2 准备预测库
|
|
|
|
|
|
|
|
|
|
预测库有两种获取方式:
|
|
|
|
|
1. [**建议**]直接下载,预测库下载链接如下:
|
|
|
|
|
|平台| 架构 | 预测库下载链接|
|
|
|
|
|
|-|-|-|
|
|
|
|
|
|Android| arm7 | [inference_lite_lib](https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.10-rc/inference_lite_lib.android.armv7.clang.c++_static.with_extra.with_cv.tar.gz) |
|
|
|
|
|
| Android | arm8 | [inference_lite_lib](https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.10-rc/inference_lite_lib.android.armv8.clang.c++_static.with_extra.with_cv.tar.gz) |
|
|
|
|
|
| Android | arm8(FP16) | [inference_lite_lib](https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.10-rc/inference_lite_lib.android.armv8_clang_c++_static_with_extra_with_cv_with_fp16.tiny_publish_427e46.zip) |
|
|
|
|
|
|
|
|
|
|
**注意**:1. 如果是从 Paddle-Lite [官方文档](https://paddle-lite.readthedocs.io/zh/latest/quick_start/release_lib.html#android-toolchain-gcc)下载的预测库,注意选择`with_extra=ON,with_cv=ON`的下载链接。2. 目前只提供Android端demo,IOS端demo可以参考[Paddle-Lite IOS demo](https://github.com/PaddlePaddle/Paddle-Lite-Demo/tree/master/PaddleLite-ios-demo)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2. 编译Paddle-Lite得到预测库,Paddle-Lite的编译方式如下:
|
|
|
|
|
```shell
|
|
|
|
|
git clone https://github.com/PaddlePaddle/Paddle-Lite.git
|
|
|
|
|
cd Paddle-Lite
|
|
|
|
|
# 如果使用编译方式,建议使用develop分支编译预测库
|
|
|
|
|
git checkout develop
|
|
|
|
|
# FP32
|
|
|
|
|
./lite/tools/build_android.sh --arch=armv8 --toolchain=clang --with_cv=ON --with_extra=ON
|
|
|
|
|
# FP16
|
|
|
|
|
./lite/tools/build_android.sh --arch=armv8 --toolchain=clang --with_cv=ON --with_extra=ON --with_arm82_fp16=ON
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
**注意**:编译Paddle-Lite获得预测库时,需要打开`--with_cv=ON --with_extra=ON`两个选项,`--arch`表示`arm`版本,这里指定为armv8,更多编译命令介绍请参考[链接](https://paddle-lite.readthedocs.io/zh/latest/source_compile/compile_andriod.html#id2)。
|
|
|
|
|
|
|
|
|
|
直接下载预测库并解压后,可以得到`inference_lite_lib.android.armv8.clang.c++_static.with_extra.with_cv/`文件夹,通过编译Paddle-Lite得到的预测库位于`Paddle-Lite/build.lite.android.armv8.gcc/inference_lite_lib.android.armv8/`文件夹下。
|
|
|
|
|
预测库的文件目录如下:
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
inference_lite_lib.android.armv8/
|
|
|
|
|
|-- cxx C++ 预测库和头文件
|
|
|
|
|
| |-- include C++ 头文件
|
|
|
|
|
| | |-- paddle_api.h
|
|
|
|
|
| | |-- paddle_image_preprocess.h
|
|
|
|
|
| | |-- paddle_lite_factory_helper.h
|
|
|
|
|
| | |-- paddle_place.h
|
|
|
|
|
| | |-- paddle_use_kernels.h
|
|
|
|
|
| | |-- paddle_use_ops.h
|
|
|
|
|
| | `-- paddle_use_passes.h
|
|
|
|
|
| `-- lib C++预测库
|
|
|
|
|
| |-- libpaddle_api_light_bundled.a C++静态库
|
|
|
|
|
| `-- libpaddle_light_api_shared.so C++动态库
|
|
|
|
|
|-- java Java预测库
|
|
|
|
|
| |-- jar
|
|
|
|
|
| | `-- PaddlePredictor.jar
|
|
|
|
|
| |-- so
|
|
|
|
|
| | `-- libpaddle_lite_jni.so
|
|
|
|
|
| `-- src
|
|
|
|
|
|-- demo C++和Java示例代码
|
|
|
|
|
| |-- cxx C++ 预测库demo
|
|
|
|
|
| `-- java Java 预测库demo
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
## 2 开始运行
|
|
|
|
|
|
2022-01-27 15:05:38 +08:00
|
|
|
|
### 2.1 模型准备
|
2022-01-22 20:17:59 +08:00
|
|
|
|
|
|
|
|
|
|
2022-01-27 15:05:38 +08:00
|
|
|
|
#### 2.1.1 模型准备
|
2022-01-22 20:17:59 +08:00
|
|
|
|
|
|
|
|
|
```shell
|
2022-01-27 15:05:38 +08:00
|
|
|
|
# 进入lite_ppshitu目录
|
2022-01-25 19:26:45 +08:00
|
|
|
|
cd $PaddleClas/deploy/lite_shitu
|
2022-01-27 15:05:38 +08:00
|
|
|
|
wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/lite/ppshitu_lite_models_v1.0.tar
|
|
|
|
|
tar -xf ppshitu_lite_models_v1.0.tar
|
|
|
|
|
rm -f ppshitu_lite_models_v1.0.tar
|
2022-01-25 19:26:45 +08:00
|
|
|
|
```
|
2022-01-22 20:17:59 +08:00
|
|
|
|
|
2022-01-27 15:05:38 +08:00
|
|
|
|
#### 2.1.2将yaml文件转换成json文件
|
2022-01-25 19:26:45 +08:00
|
|
|
|
|
|
|
|
|
```shell
|
|
|
|
|
# 如果测试单张图像
|
2022-01-28 11:31:49 +08:00
|
|
|
|
python generate_json_config.py --det_model_path ppshitu_lite_models_v1.0/mainbody_PPLCNet_x2_5_640_quant_v1.0_lite.nb --rec_model_path ppshitu_lite_models_v1.0/general_PPLCNet_x2_5_quant_v1.0_lite.nb --rec_label_path ppshitu_lite_models_v1.0/label.txt --img_path images/demo.jpg
|
2022-01-25 19:26:45 +08:00
|
|
|
|
# or
|
|
|
|
|
# 如果测试多张图像
|
2022-01-28 11:31:49 +08:00
|
|
|
|
python generate_json_config.py --det_model_path ppshitu_lite_models_v1.0/mainbody_PPLCNet_x2_5_640_quant_v1.0_lite.nb --rec_model_path ppshitu_lite_models_v1.0/general_PPLCNet_x2_5_quant_v1.0_lite.nb --rec_label_path ppshitu_lite_models_v1.0/label.txt --img_dir images
|
2022-01-25 19:26:45 +08:00
|
|
|
|
|
|
|
|
|
# 执行完成后,会在lit_shitu下生成shitu_config.json配置文件
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
|
2022-01-22 20:17:59 +08:00
|
|
|
|
### 2.2 与手机联调
|
|
|
|
|
|
|
|
|
|
首先需要进行一些准备工作。
|
|
|
|
|
1. 准备一台arm8的安卓手机,如果编译的预测库是armv7,则需要arm7的手机,并修改Makefile中`ARM_ABI=arm7`。
|
|
|
|
|
2. 电脑上安装ADB工具,用于调试。 ADB安装方式如下:
|
|
|
|
|
|
|
|
|
|
2.1. MAC电脑安装ADB:
|
|
|
|
|
|
|
|
|
|
```shell
|
|
|
|
|
brew cask install android-platform-tools
|
|
|
|
|
```
|
|
|
|
|
2.2. Linux安装ADB
|
|
|
|
|
```shell
|
|
|
|
|
sudo apt update
|
|
|
|
|
sudo apt install -y wget adb
|
|
|
|
|
```
|
|
|
|
|
2.3. Window安装ADB
|
|
|
|
|
|
|
|
|
|
win上安装需要去谷歌的安卓平台下载ADB软件包进行安装:[链接](https://developer.android.com/studio)
|
|
|
|
|
|
|
|
|
|
3. 手机连接电脑后,开启手机`USB调试`选项,选择`文件传输`模式,在电脑终端中输入:
|
|
|
|
|
|
|
|
|
|
```shell
|
|
|
|
|
adb devices
|
|
|
|
|
```
|
|
|
|
|
如果有device输出,则表示安装成功,如下所示:
|
|
|
|
|
```
|
|
|
|
|
List of devices attached
|
|
|
|
|
744be294 device
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
4. 编译lite部署代码生成移动端可执行文件
|
|
|
|
|
|
|
|
|
|
```shell
|
2022-01-25 19:26:45 +08:00
|
|
|
|
cd $PaddleClas/deploy/lite_shitu
|
2022-01-27 15:05:38 +08:00
|
|
|
|
# ${lite prediction library path}下载的Paddle-Lite库路径
|
|
|
|
|
inference_lite_path=${lite prediction library path}/inference_lite_lib.android.armv8.gcc.c++_static.with_extra.with_cv/
|
2022-01-25 19:26:45 +08:00
|
|
|
|
mkdir $inference_lite_path/demo/cxx/ppshitu_lite
|
2022-01-22 20:17:59 +08:00
|
|
|
|
|
2022-01-27 15:05:38 +08:00
|
|
|
|
cp -r * $inference_lite_path/demo/cxx/ppshitu_lite
|
2022-01-25 19:26:45 +08:00
|
|
|
|
cd $inference_lite_path/demo/cxx/ppshitu_lite
|
2022-01-22 20:17:59 +08:00
|
|
|
|
|
|
|
|
|
# 执行编译,等待完成后得到可执行文件main
|
|
|
|
|
make ARM_ABI=arm8
|
|
|
|
|
#如果是arm7,则执行 make ARM_ABI = arm7 (或者在Makefile中修改该项)
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
5. 准备优化后的模型、预测库文件、测试图像。
|
|
|
|
|
|
|
|
|
|
```shell
|
|
|
|
|
mkdir deploy
|
2022-01-27 15:05:38 +08:00
|
|
|
|
mv ppshitu_lite_models_v1.0 deploy/
|
2022-01-25 19:26:45 +08:00
|
|
|
|
mv images deploy/
|
2022-01-27 15:05:38 +08:00
|
|
|
|
mv shitu_config.json deploy/
|
2022-01-25 19:26:45 +08:00
|
|
|
|
cp pp_shitu deploy/
|
2022-01-22 20:17:59 +08:00
|
|
|
|
|
|
|
|
|
# 将C++预测动态库so文件复制到deploy文件夹中
|
2022-01-27 15:05:38 +08:00
|
|
|
|
cp ../../../cxx/lib/libpaddle_light_api_shared.so deploy/
|
2022-01-22 20:17:59 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
执行完成后,deploy文件夹下将有如下文件格式:
|
|
|
|
|
|
2022-01-27 15:05:38 +08:00
|
|
|
|
```shell
|
2022-01-22 20:17:59 +08:00
|
|
|
|
deploy/
|
2022-01-27 15:05:38 +08:00
|
|
|
|
|-- ppshitu_lite_models_v1.0/
|
|
|
|
|
| |--mainbody_PPLCNet_x2_5_640_v1.0_lite.nb 优化后的主体检测模型文件
|
|
|
|
|
| |--general_PPLCNet_x2_5_quant_v1.0_lite.nb 优化后的识别模型文件
|
|
|
|
|
| |--label.txt 识别模型的label文件
|
2022-01-25 19:26:45 +08:00
|
|
|
|
|-- images/
|
2022-01-27 15:05:38 +08:00
|
|
|
|
| |--demo.jpg 图片文件
|
|
|
|
|
| ... 图片文件
|
|
|
|
|
|-- pp_shitu 生成的移动端执行文件
|
|
|
|
|
|-- shitu_config.json 执行时参数配置文件
|
|
|
|
|
|-- libpaddle_light_api_shared.so Paddle-Lite库文件
|
2022-01-22 20:17:59 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
**注意:**
|
2022-01-25 19:26:45 +08:00
|
|
|
|
* `shitu_config.json` 包含了目标检测的超参数,请按需进行修改
|
2022-01-22 20:17:59 +08:00
|
|
|
|
|
|
|
|
|
6. 启动调试,上述步骤完成后就可以使用ADB将文件夹 `deploy/` push到手机上运行,步骤如下:
|
|
|
|
|
|
|
|
|
|
```shell
|
|
|
|
|
# 将上述deploy文件夹push到手机上
|
|
|
|
|
adb push deploy /data/local/tmp/
|
|
|
|
|
|
|
|
|
|
adb shell
|
|
|
|
|
cd /data/local/tmp/deploy
|
|
|
|
|
export LD_LIBRARY_PATH=/data/local/tmp/deploy:$LD_LIBRARY_PATH
|
|
|
|
|
|
|
|
|
|
# 修改权限为可执行
|
2022-01-25 19:26:45 +08:00
|
|
|
|
chmod 777 pp_shitu
|
|
|
|
|
# 执行程序
|
|
|
|
|
./pp_shitu shitu_config.json
|
2022-01-22 20:17:59 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
如果对代码做了修改,则需要重新编译并push到手机上。
|
|
|
|
|
|
|
|
|
|
运行效果如下:
|
|
|
|
|
|
2022-01-25 19:26:45 +08:00
|
|
|
|

|
2022-01-22 20:17:59 +08:00
|
|
|
|
|
|
|
|
|
## FAQ
|
2022-01-25 19:26:45 +08:00
|
|
|
|
Q1:如果想更换模型怎么办,需要重新按照流程走一遍吗?
|
2022-01-22 20:17:59 +08:00
|
|
|
|
A1:如果已经走通了上述步骤,更换模型只需要替换 `.nb` 模型文件即可,同时要注意修改下配置文件中的 `.nb` 文件路径以及类别映射文件(如有必要)。
|
|
|
|
|
|
2022-01-25 19:26:45 +08:00
|
|
|
|
Q2:换一个图测试怎么做?
|
|
|
|
|
A2:替换 deploy 下的测试图像为你想要测试的图像,并重新生成json配置文件(或者直接修改图像路径),使用 ADB 再次 push 到手机上即可。
|