PaddleClas/ppcls/arch/backbone/variant_models/resnet_variant.py

36 lines
1.3 KiB
Python
Raw Normal View History

2022-10-17 15:45:45 +08:00
from paddle import nn
2022-08-17 22:34:06 +08:00
from ..legendary_models.resnet import ResNet50, MODEL_URLS, _load_pretrained
2021-06-04 10:19:01 +08:00
2022-10-17 15:45:45 +08:00
__all__ = ["ResNet50_last_stage_stride1", "ResNet50_adaptive_max_pool2d"]
2021-06-04 10:19:01 +08:00
def ResNet50_last_stage_stride1(pretrained=False, use_ssld=False, **kwargs):
2021-12-27 22:03:55 +08:00
def replace_function(conv, pattern):
2022-10-17 15:45:45 +08:00
new_conv = nn.Conv2D(
2021-06-04 10:19:01 +08:00
in_channels=conv._in_channels,
out_channels=conv._out_channels,
kernel_size=conv._kernel_size,
stride=1,
padding=conv._padding,
groups=conv._groups,
bias_attr=conv._bias_attr)
return new_conv
2021-12-27 22:03:55 +08:00
pattern = ["blocks[13].conv1.conv", "blocks[13].short.conv"]
2021-07-05 20:16:48 +08:00
model = ResNet50(pretrained=False, use_ssld=use_ssld, **kwargs)
2021-12-27 22:03:55 +08:00
model.upgrade_sublayer(pattern, replace_function)
2021-07-05 20:16:48 +08:00
_load_pretrained(pretrained, model, MODEL_URLS["ResNet50"], use_ssld)
2021-06-04 10:19:01 +08:00
return model
2022-10-17 15:45:45 +08:00
def ResNet50_adaptive_max_pool2d(pretrained=False, use_ssld=False, **kwargs):
def replace_function(pool, pattern):
new_pool = nn.AdaptiveMaxPool2D(output_size=1)
return new_pool
pattern = ["avg_pool"]
model = ResNet50(pretrained=False, use_ssld=use_ssld, **kwargs)
model.upgrade_sublayer(pattern, replace_function)
_load_pretrained(pretrained, model, MODEL_URLS["ResNet50"], use_ssld)
return model