2021-11-02 11:49:55 +00:00
|
|
|
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
//
|
|
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
// you may not use this file except in compliance with the License.
|
|
|
|
// You may obtain a copy of the License at
|
|
|
|
//
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
//
|
|
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
// See the License for the specific language governing permissions and
|
|
|
|
// limitations under the License.
|
|
|
|
|
2021-11-12 06:18:50 +00:00
|
|
|
#include <cmath>
|
|
|
|
#include <include/feature_extracter.h>
|
|
|
|
#include <numeric>
|
2021-11-02 11:49:55 +00:00
|
|
|
|
2021-11-12 06:18:50 +00:00
|
|
|
namespace Feature {
|
2021-11-02 11:49:55 +00:00
|
|
|
|
2021-12-01 15:52:48 +08:00
|
|
|
void FeatureExtracter::LoadModel(const std::string &model_path,
|
|
|
|
const std::string ¶ms_path) {
|
|
|
|
paddle_infer::Config config;
|
|
|
|
config.SetModel(model_path, params_path);
|
|
|
|
|
|
|
|
if (this->use_gpu_) {
|
|
|
|
config.EnableUseGpu(this->gpu_mem_, this->gpu_id_);
|
|
|
|
if (this->use_tensorrt_) {
|
|
|
|
config.EnableTensorRtEngine(
|
|
|
|
1 << 20, 1, 3,
|
|
|
|
this->use_fp16_ ? paddle_infer::Config::Precision::kHalf
|
|
|
|
: paddle_infer::Config::Precision::kFloat32,
|
|
|
|
false, false);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
config.DisableGpu();
|
|
|
|
if (this->use_mkldnn_) {
|
|
|
|
config.EnableMKLDNN();
|
|
|
|
// cache 10 different shapes for mkldnn to avoid memory leak
|
|
|
|
config.SetMkldnnCacheCapacity(10);
|
|
|
|
}
|
|
|
|
config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_);
|
|
|
|
}
|
|
|
|
|
|
|
|
config.SwitchUseFeedFetchOps(false);
|
|
|
|
// true for multiple input
|
|
|
|
config.SwitchSpecifyInputNames(true);
|
|
|
|
|
|
|
|
config.SwitchIrOptim(true);
|
|
|
|
|
|
|
|
config.EnableMemoryOptim();
|
|
|
|
config.DisableGlogInfo();
|
|
|
|
|
|
|
|
this->predictor_ = CreatePredictor(config);
|
2021-11-02 11:49:55 +00:00
|
|
|
}
|
2021-12-01 15:52:48 +08:00
|
|
|
|
|
|
|
void FeatureExtracter::Run(cv::Mat &img, std::vector<float> &out_data,
|
|
|
|
std::vector<double> ×) {
|
|
|
|
cv::Mat resize_img;
|
|
|
|
std::vector<double> time;
|
|
|
|
|
|
|
|
auto preprocess_start = std::chrono::steady_clock::now();
|
|
|
|
this->resize_op_.Run(img, resize_img, this->resize_short_,
|
|
|
|
this->resize_size_);
|
|
|
|
|
|
|
|
this->normalize_op_.Run(&resize_img, this->mean_, this->std_, this->scale_);
|
|
|
|
std::vector<float> input(1 * 3 * resize_img.rows * resize_img.cols, 0.0f);
|
|
|
|
this->permute_op_.Run(&resize_img, input.data());
|
|
|
|
|
|
|
|
auto input_names = this->predictor_->GetInputNames();
|
|
|
|
auto input_t = this->predictor_->GetInputHandle(input_names[0]);
|
|
|
|
input_t->Reshape({1, 3, resize_img.rows, resize_img.cols});
|
|
|
|
auto preprocess_end = std::chrono::steady_clock::now();
|
|
|
|
|
|
|
|
auto infer_start = std::chrono::steady_clock::now();
|
|
|
|
input_t->CopyFromCpu(input.data());
|
|
|
|
this->predictor_->Run();
|
|
|
|
|
|
|
|
auto output_names = this->predictor_->GetOutputNames();
|
|
|
|
auto output_t = this->predictor_->GetOutputHandle(output_names[0]);
|
|
|
|
std::vector<int> output_shape = output_t->shape();
|
|
|
|
int out_num = std::accumulate(output_shape.begin(), output_shape.end(), 1,
|
|
|
|
std::multiplies<int>());
|
|
|
|
|
|
|
|
out_data.resize(out_num);
|
|
|
|
output_t->CopyToCpu(out_data.data());
|
|
|
|
auto infer_end = std::chrono::steady_clock::now();
|
|
|
|
|
|
|
|
auto postprocess_start = std::chrono::steady_clock::now();
|
|
|
|
if (this->feature_norm)
|
|
|
|
FeatureNorm(out_data);
|
|
|
|
auto postprocess_end = std::chrono::steady_clock::now();
|
|
|
|
|
|
|
|
std::chrono::duration<float> preprocess_diff =
|
|
|
|
preprocess_end - preprocess_start;
|
|
|
|
time.push_back(double(preprocess_diff.count()) * 1000);
|
|
|
|
std::chrono::duration<float> inference_diff = infer_end - infer_start;
|
|
|
|
double inference_cost_time = double(inference_diff.count() * 1000);
|
|
|
|
time.push_back(inference_cost_time);
|
|
|
|
// std::chrono::duration<float> postprocess_diff =
|
|
|
|
// postprocess_end - postprocess_start;
|
|
|
|
time.push_back(0);
|
|
|
|
|
|
|
|
// std::cout << "result: " << std::endl;
|
|
|
|
// std::cout << "\tclass id: " << maxPosition << std::endl;
|
|
|
|
// std::cout << std::fixed << std::setprecision(10)
|
|
|
|
// << "\tscore: " << double(out_data[maxPosition]) << std::endl;
|
|
|
|
times[0] += time[0];
|
|
|
|
times[1] += time[1];
|
|
|
|
times[2] += time[2];
|
|
|
|
}
|
|
|
|
|
|
|
|
void FeatureExtracter::FeatureNorm(std::vector<float> &featuer) {
|
|
|
|
float featuer_sqrt = std::sqrt(std::inner_product(
|
|
|
|
featuer.begin(), featuer.end(), featuer.begin(), 0.0f));
|
|
|
|
for (int i = 0; i < featuer.size(); ++i)
|
|
|
|
featuer[i] /= featuer_sqrt;
|
2021-11-02 11:49:55 +00:00
|
|
|
}
|
2021-11-12 06:18:50 +00:00
|
|
|
} // namespace Feature
|