PaddleClas/hubconf.py

856 lines
26 KiB
Python
Raw Normal View History

2021-04-02 19:59:37 +08:00
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
2021-03-24 10:40:57 +08:00
2021-03-24 16:57:21 +08:00
dependencies = ['paddle', 'numpy']
2021-03-24 10:40:57 +08:00
2021-03-25 13:38:05 +08:00
import paddle
2021-03-24 10:40:57 +08:00
2021-03-25 14:38:31 +08:00
from ppcls.modeling.architectures import alexnet as _alexnet
from ppcls.modeling.architectures import vgg as _vgg
2021-03-25 14:26:52 +08:00
from ppcls.modeling.architectures import resnet as _resnet
2021-03-25 14:48:00 +08:00
from ppcls.modeling.architectures import squeezenet as _squeezenet
from ppcls.modeling.architectures import densenet as _densenet
from ppcls.modeling.architectures import inception_v3 as _inception_v3
from ppcls.modeling.architectures import inception_v4 as _inception_v4
2021-03-25 15:10:17 +08:00
from ppcls.modeling.architectures import googlenet as _googlenet
from ppcls.modeling.architectures import shufflenet_v2 as _shufflenet_v2
from ppcls.modeling.architectures import mobilenet_v1 as _mobilenet_v1
from ppcls.modeling.architectures import mobilenet_v2 as _mobilenet_v2
from ppcls.modeling.architectures import mobilenet_v3 as _mobilenet_v3
from ppcls.modeling.architectures import resnext as _resnext
2021-03-25 14:48:00 +08:00
2021-03-24 16:37:50 +08:00
2021-04-02 20:01:55 +08:00
def _load_pretrained_parameters(model, name):
2021-04-25 20:13:21 +08:00
url = 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/{}_pretrained.pdparams'.format(name)
path = paddle.utils.download.get_weights_path_from_url(url)
2021-04-02 20:01:55 +08:00
model.set_state_dict(paddle.load(path))
return model
2021-03-25 14:38:31 +08:00
2021-03-29 20:12:35 +08:00
def AlexNet(pretrained=False, **kwargs):
2021-04-25 19:34:14 +08:00
"""
AlexNet
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `AlexNet` model depends on args.
"""
2021-03-25 14:38:31 +08:00
model = _alexnet.AlexNet(**kwargs)
if pretrained:
2021-04-06 12:01:02 +08:00
model = _load_pretrained_parameters(model, 'AlexNet')
2021-03-25 14:38:31 +08:00
return model
2021-03-29 20:12:35 +08:00
def VGG11(pretrained=False, **kwargs):
2021-04-25 19:34:14 +08:00
"""
VGG11
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
stop_grad_layers: int=0. The parameters in blocks which index larger than `stop_grad_layers`, will be set `param.trainable=False`
Returns:
model: nn.Layer. Specific `VGG11` model depends on args.
"""
2021-03-25 14:38:31 +08:00
model = _vgg.VGG11(**kwargs)
if pretrained:
2021-04-06 12:01:02 +08:00
model = _load_pretrained_parameters(model, 'VGG11')
2021-03-25 14:38:31 +08:00
return model
2021-03-29 20:12:35 +08:00
def VGG13(pretrained=False, **kwargs):
2021-04-25 19:34:14 +08:00
"""
VGG13
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
stop_grad_layers: int=0. The parameters in blocks which index larger than `stop_grad_layers`, will be set `param.trainable=False`
Returns:
model: nn.Layer. Specific `VGG13` model depends on args.
"""
2021-03-25 14:38:31 +08:00
model = _vgg.VGG13(**kwargs)
if pretrained:
2021-04-06 12:01:02 +08:00
model = _load_pretrained_parameters(model, 'VGG13')
2021-03-25 14:38:31 +08:00
return model
2021-03-29 20:12:35 +08:00
def VGG16(pretrained=False, **kwargs):
2021-04-25 19:34:14 +08:00
"""
VGG16
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
stop_grad_layers: int=0. The parameters in blocks which index larger than `stop_grad_layers`, will be set `param.trainable=False`
Returns:
model: nn.Layer. Specific `VGG16` model depends on args.
"""
2021-03-25 14:38:31 +08:00
model = _vgg.VGG16(**kwargs)
if pretrained:
2021-04-06 12:01:02 +08:00
model = _load_pretrained_parameters(model, 'VGG16')
2021-03-25 14:38:31 +08:00
return model
2021-03-29 20:12:35 +08:00
def VGG19(pretrained=False, **kwargs):
2021-04-25 19:34:14 +08:00
"""
VGG19
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
stop_grad_layers: int=0. The parameters in blocks which index larger than `stop_grad_layers`, will be set `param.trainable=False`
Returns:
model: nn.Layer. Specific `VGG19` model depends on args.
"""
2021-03-25 14:38:31 +08:00
model = _vgg.VGG19(**kwargs)
if pretrained:
2021-04-06 12:01:02 +08:00
model = _load_pretrained_parameters(model, 'VGG19')
2021-03-25 14:38:31 +08:00
return model
2021-03-29 20:12:35 +08:00
def ResNet18(pretrained=False, **kwargs):
2021-04-25 19:34:14 +08:00
"""
ResNet18
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
input_image_channel: int=3. The number of input image channels
data_format: str='NCHW'. The data format of batch input images, should in ('NCHW', 'NHWC')
Returns:
model: nn.Layer. Specific `ResNet18` model depends on args.
"""
2021-03-25 14:26:52 +08:00
model = _resnet.ResNet18(**kwargs)
2021-03-25 13:38:05 +08:00
if pretrained:
2021-04-06 12:01:02 +08:00
model = _load_pretrained_parameters(model, 'ResNet18')
2021-03-25 13:38:05 +08:00
2021-03-24 10:40:57 +08:00
return model
2021-03-24 16:37:50 +08:00
2021-03-29 20:12:35 +08:00
def ResNet34(pretrained=False, **kwargs):
2021-04-25 19:34:14 +08:00
"""
ResNet34
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
input_image_channel: int=3. The number of input image channels
data_format: str='NCHW'. The data format of batch input images, should in ('NCHW', 'NHWC')
Returns:
model: nn.Layer. Specific `ResNet34` model depends on args.
"""
2021-03-25 14:26:52 +08:00
model = _resnet.ResNet34(**kwargs)
if pretrained:
2021-04-06 12:01:02 +08:00
model = _load_pretrained_parameters(model, 'ResNet34')
2021-03-24 16:37:50 +08:00
2021-03-25 14:26:52 +08:00
return model
2021-03-24 16:37:50 +08:00
2021-03-29 20:12:35 +08:00
def ResNet50(pretrained=False, **kwargs):
2021-04-25 19:34:14 +08:00
"""
ResNet50
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
input_image_channel: int=3. The number of input image channels
data_format: str='NCHW'. The data format of batch input images, should in ('NCHW', 'NHWC')
Returns:
model: nn.Layer. Specific `ResNet50` model depends on args.
"""
2021-03-25 14:38:31 +08:00
model = _resnet.ResNet50(**kwargs)
if pretrained:
2021-04-06 12:01:02 +08:00
model = _load_pretrained_parameters(model, 'ResNet50')
2021-03-25 14:38:31 +08:00
return model
2021-03-29 20:12:35 +08:00
def ResNet101(pretrained=False, **kwargs):
2021-04-25 19:34:14 +08:00
"""
ResNet101
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
input_image_channel: int=3. The number of input image channels
data_format: str='NCHW'. The data format of batch input images, should in ('NCHW', 'NHWC')
Returns:
model: nn.Layer. Specific `ResNet101` model depends on args.
"""
2021-03-25 14:38:31 +08:00
model = _resnet.ResNet101(**kwargs)
if pretrained:
2021-04-06 12:01:02 +08:00
model = _load_pretrained_parameters(model, 'ResNet101')
2021-03-25 14:38:31 +08:00
return model
2021-03-29 20:12:35 +08:00
def ResNet152(pretrained=False, **kwargs):
2021-04-25 19:34:14 +08:00
"""
ResNet152
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
input_image_channel: int=3. The number of input image channels
data_format: str='NCHW'. The data format of batch input images, should in ('NCHW', 'NHWC')
Returns:
model: nn.Layer. Specific `ResNet152` model depends on args.
"""
2021-03-25 14:38:31 +08:00
model = _resnet.ResNet152(**kwargs)
if pretrained:
2021-04-06 12:01:02 +08:00
model = _load_pretrained_parameters(model, 'ResNet152')
2021-03-25 14:38:31 +08:00
return model
2021-03-25 15:10:17 +08:00
2021-03-29 20:12:35 +08:00
def SqueezeNet1_0(pretrained=False, **kwargs):
2021-04-25 19:34:14 +08:00
"""
SqueezeNet1_0
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `SqueezeNet1_0` model depends on args.
"""
2021-03-25 15:10:17 +08:00
model = _squeezenet.SqueezeNet1_0(**kwargs)
if pretrained:
2021-04-06 12:01:02 +08:00
model = _load_pretrained_parameters(model, 'SqueezeNet1_0')
2021-03-25 15:10:17 +08:00
return model
2021-03-29 20:12:35 +08:00
def SqueezeNet1_1(pretrained=False, **kwargs):
2021-04-25 19:34:14 +08:00
"""
SqueezeNet1_1
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `SqueezeNet1_1` model depends on args.
"""
2021-03-25 15:10:17 +08:00
model = _squeezenet.SqueezeNet1_1(**kwargs)
if pretrained:
2021-04-06 12:01:02 +08:00
model = _load_pretrained_parameters(model, 'SqueezeNet1_1')
2021-03-25 15:10:17 +08:00
return model
2021-03-25 15:14:28 +08:00
2021-03-29 20:12:35 +08:00
def DenseNet121(pretrained=False, **kwargs):
2021-04-25 19:34:14 +08:00
"""
DenseNet121
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
dropout: float=0. Probability of setting units to zero.
bn_size: int=4. The number of channals per group
Returns:
model: nn.Layer. Specific `DenseNet121` model depends on args.
"""
2021-03-25 15:14:28 +08:00
model = _densenet.DenseNet121(**kwargs)
if pretrained:
2021-04-06 12:01:02 +08:00
model = _load_pretrained_parameters(model, 'DenseNet121')
2021-03-25 15:14:28 +08:00
return model
2021-03-29 20:12:35 +08:00
def DenseNet161(pretrained=False, **kwargs):
2021-04-25 19:34:14 +08:00
"""
DenseNet161
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
dropout: float=0. Probability of setting units to zero.
bn_size: int=4. The number of channals per group
Returns:
model: nn.Layer. Specific `DenseNet161` model depends on args.
"""
2021-03-25 15:14:28 +08:00
model = _densenet.DenseNet161(**kwargs)
if pretrained:
2021-04-06 12:01:02 +08:00
model = _load_pretrained_parameters(model, 'DenseNet161')
2021-03-25 15:14:28 +08:00
return model
2021-03-29 20:12:35 +08:00
def DenseNet169(pretrained=False, **kwargs):
2021-04-25 19:34:14 +08:00
"""
DenseNet169
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
dropout: float=0. Probability of setting units to zero.
bn_size: int=4. The number of channals per group
Returns:
model: nn.Layer. Specific `DenseNet169` model depends on args.
"""
2021-03-25 15:14:28 +08:00
model = _densenet.DenseNet169(**kwargs)
if pretrained:
2021-04-06 12:01:02 +08:00
model = _load_pretrained_parameters(model, 'DenseNet169')
2021-03-25 15:14:28 +08:00
return model
2021-03-29 20:12:35 +08:00
def DenseNet201(pretrained=False, **kwargs):
2021-04-25 19:34:14 +08:00
"""
DenseNet201
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
dropout: float=0. Probability of setting units to zero.
bn_size: int=4. The number of channals per group
Returns:
model: nn.Layer. Specific `DenseNet201` model depends on args.
"""
2021-03-25 15:14:28 +08:00
model = _densenet.DenseNet201(**kwargs)
if pretrained:
2021-04-06 12:01:02 +08:00
model = _load_pretrained_parameters(model, 'DenseNet201')
2021-03-25 15:14:28 +08:00
return model
2021-03-29 20:12:35 +08:00
def DenseNet264(pretrained=False, **kwargs):
2021-04-25 19:34:14 +08:00
"""
DenseNet264
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
dropout: float=0. Probability of setting units to zero.
bn_size: int=4. The number of channals per group
Returns:
model: nn.Layer. Specific `DenseNet264` model depends on args.
"""
2021-03-25 15:14:28 +08:00
model = _densenet.DenseNet264(**kwargs)
if pretrained:
2021-04-06 12:01:02 +08:00
model = _load_pretrained_parameters(model, 'DenseNet264')
2021-03-25 15:14:28 +08:00
return model
2021-03-25 15:16:22 +08:00
2021-03-29 20:12:35 +08:00
def InceptionV3(pretrained=False, **kwargs):
2021-04-25 19:34:14 +08:00
"""
InceptionV3
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `InceptionV3` model depends on args.
"""
2021-03-25 15:16:22 +08:00
model = _inception_v3.InceptionV3(**kwargs)
if pretrained:
2021-04-06 12:01:02 +08:00
model = _load_pretrained_parameters(model, 'InceptionV3')
2021-03-25 15:16:22 +08:00
return model
2021-03-29 20:12:35 +08:00
def InceptionV4(pretrained=False, **kwargs):
2021-04-25 19:34:14 +08:00
"""
InceptionV4
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `InceptionV4` model depends on args.
"""
2021-03-25 15:16:22 +08:00
model = _inception_v4.InceptionV4(**kwargs)
if pretrained:
2021-04-06 12:01:02 +08:00
model = _load_pretrained_parameters(model, 'InceptionV4')
2021-03-25 15:16:22 +08:00
2021-03-25 15:27:36 +08:00
return model
2021-03-29 20:12:35 +08:00
def GoogLeNet(pretrained=False, **kwargs):
2021-04-25 19:34:14 +08:00
"""
GoogLeNet
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `GoogLeNet` model depends on args.
"""
2021-03-25 15:27:36 +08:00
model = _googlenet.GoogLeNet(**kwargs)
if pretrained:
2021-04-06 12:01:02 +08:00
model = _load_pretrained_parameters(model, 'GoogLeNet')
2021-03-25 15:27:36 +08:00
return model
2021-03-29 20:12:35 +08:00
def ShuffleNet(pretrained=False, **kwargs):
2021-04-25 19:34:14 +08:00
"""
ShuffleNet
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `ShuffleNet` model depends on args.
"""
2021-03-25 15:27:36 +08:00
model = _shufflenet_v2.ShuffleNet(**kwargs)
if pretrained:
2021-04-06 12:01:02 +08:00
model = _load_pretrained_parameters(model, 'ShuffleNet')
2021-03-25 15:27:36 +08:00
return model
2021-03-29 20:12:35 +08:00
def MobileNetV1(pretrained=False, **kwargs):
2021-04-25 19:34:14 +08:00
"""
MobileNetV1
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `MobileNetV1` model depends on args.
"""
2021-03-25 15:27:36 +08:00
model = _mobilenet_v1.MobileNetV1(**kwargs)
if pretrained:
2021-04-06 12:01:02 +08:00
model = _load_pretrained_parameters(model, 'MobileNetV1')
2021-03-25 15:27:36 +08:00
return model
2021-03-29 20:12:35 +08:00
def MobileNetV1_x0_25(pretrained=False, **kwargs):
2021-04-25 19:34:14 +08:00
"""
MobileNetV1_x0_25
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `MobileNetV1_x0_25` model depends on args.
"""
2021-03-25 15:27:36 +08:00
model = _mobilenet_v1.MobileNetV1_x0_25(**kwargs)
if pretrained:
2021-04-06 12:01:02 +08:00
model = _load_pretrained_parameters(model, 'MobileNetV1_x0_25')
2021-03-25 15:27:36 +08:00
return model
2021-03-29 20:12:35 +08:00
def MobileNetV1_x0_5(pretrained=False, **kwargs):
2021-04-25 19:34:14 +08:00
"""
MobileNetV1_x0_5
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `MobileNetV1_x0_5` model depends on args.
"""
2021-03-25 15:27:36 +08:00
model = _mobilenet_v1.MobileNetV1_x0_5(**kwargs)
if pretrained:
2021-04-06 12:01:02 +08:00
model = _load_pretrained_parameters(model, 'MobileNetV1_x0_5')
2021-03-25 15:27:36 +08:00
return model
2021-03-29 20:12:35 +08:00
def MobileNetV1_x0_75(pretrained=False, **kwargs):
2021-04-25 19:34:14 +08:00
"""
MobileNetV1_x0_75
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `MobileNetV1_x0_75` model depends on args.
"""
2021-03-25 15:27:36 +08:00
model = _mobilenet_v1.MobileNetV1_x0_75(**kwargs)
if pretrained:
2021-04-06 12:01:02 +08:00
model = _load_pretrained_parameters(model, 'MobileNetV1_x0_75')
2021-03-25 15:27:36 +08:00
return model
2021-03-29 20:12:35 +08:00
def MobileNetV2_x0_25(pretrained=False, **kwargs):
2021-04-25 19:34:14 +08:00
"""
MobileNetV2_x0_25
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `MobileNetV2_x0_25` model depends on args.
"""
2021-03-25 15:27:36 +08:00
model = _mobilenet_v2.MobileNetV2_x0_25(**kwargs)
if pretrained:
2021-04-06 12:01:02 +08:00
model = _load_pretrained_parameters(model, 'MobileNetV2_x0_25')
2021-03-25 15:27:36 +08:00
return model
2021-03-29 20:12:35 +08:00
def MobileNetV2_x0_5(pretrained=False, **kwargs):
2021-04-25 19:34:14 +08:00
"""
MobileNetV2_x0_5
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `MobileNetV2_x0_5` model depends on args.
"""
2021-03-25 15:27:36 +08:00
model = _mobilenet_v2.MobileNetV2_x0_5(**kwargs)
if pretrained:
2021-04-06 12:01:02 +08:00
model = _load_pretrained_parameters(model, 'MobileNetV2_x0_5')
2021-03-25 15:27:36 +08:00
return model
2021-03-29 20:12:35 +08:00
def MobileNetV2_x0_75(pretrained=False, **kwargs):
2021-04-25 19:34:14 +08:00
"""
MobileNetV2_x0_75
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `MobileNetV2_x0_75` model depends on args.
"""
2021-03-25 15:27:36 +08:00
model = _mobilenet_v2.MobileNetV2_x0_75(**kwargs)
if pretrained:
2021-04-06 12:01:02 +08:00
model = _load_pretrained_parameters(model, 'MobileNetV2_x0_75')
2021-03-25 15:27:36 +08:00
return model
2021-03-29 20:12:35 +08:00
def MobileNetV2_x1_5(pretrained=False, **kwargs):
2021-04-25 19:34:14 +08:00
"""
MobileNetV2_x1_5
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `MobileNetV2_x1_5` model depends on args.
"""
2021-03-25 15:27:36 +08:00
model = _mobilenet_v2.MobileNetV2_x1_5(**kwargs)
if pretrained:
2021-04-06 12:01:02 +08:00
model = _load_pretrained_parameters(model, 'MobileNetV2_x1_5')
2021-03-25 15:27:36 +08:00
return model
2021-03-29 20:12:35 +08:00
def MobileNetV2_x2_0(pretrained=False, **kwargs):
2021-04-25 19:34:14 +08:00
"""
MobileNetV2_x2_0
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `MobileNetV2_x2_0` model depends on args.
"""
2021-03-25 15:27:36 +08:00
model = _mobilenet_v2.MobileNetV2_x2_0(**kwargs)
if pretrained:
2021-04-06 12:01:02 +08:00
model = _load_pretrained_parameters(model, 'MobileNetV2_x2_0')
2021-03-25 15:27:36 +08:00
return model
2021-03-29 20:12:35 +08:00
def MobileNetV3_large_x0_35(pretrained=False, **kwargs):
2021-04-25 19:34:14 +08:00
"""
MobileNetV3_large_x0_35
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `MobileNetV3_large_x0_35` model depends on args.
"""
2021-03-25 15:27:36 +08:00
model = _mobilenet_v3.MobileNetV3_large_x0_35(**kwargs)
if pretrained:
2021-04-06 12:01:02 +08:00
model = _load_pretrained_parameters(model, 'MobileNetV3_large_x0_35')
2021-03-25 15:27:36 +08:00
return model
2021-03-29 20:12:35 +08:00
def MobileNetV3_large_x0_5(pretrained=False, **kwargs):
2021-04-25 19:34:14 +08:00
"""
MobileNetV3_large_x0_5
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `MobileNetV3_large_x0_5` model depends on args.
"""
2021-03-25 15:27:36 +08:00
model = _mobilenet_v3.MobileNetV3_large_x0_5(**kwargs)
if pretrained:
2021-04-06 12:01:02 +08:00
model = _load_pretrained_parameters(model, 'MobileNetV3_large_x0_5')
2021-03-25 15:27:36 +08:00
return model
2021-03-29 20:12:35 +08:00
def MobileNetV3_large_x0_75(pretrained=False, **kwargs):
2021-04-25 19:34:14 +08:00
"""
MobileNetV3_large_x0_75
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `MobileNetV3_large_x0_75` model depends on args.
"""
2021-03-25 15:27:36 +08:00
model = _mobilenet_v3.MobileNetV3_large_x0_75(**kwargs)
if pretrained:
2021-04-06 12:01:02 +08:00
model = _load_pretrained_parameters(model, 'MobileNetV3_large_x0_75')
2021-03-25 15:27:36 +08:00
return model
2021-03-29 20:12:35 +08:00
def MobileNetV3_large_x1_0(pretrained=False, **kwargs):
2021-04-25 19:34:14 +08:00
"""
MobileNetV3_large_x1_0
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `MobileNetV3_large_x1_0` model depends on args.
"""
2021-03-25 15:27:36 +08:00
model = _mobilenet_v3.MobileNetV3_large_x1_0(**kwargs)
if pretrained:
2021-04-06 12:01:02 +08:00
model = _load_pretrained_parameters(model, 'MobileNetV3_large_x1_0')
2021-03-25 15:27:36 +08:00
return model
2021-03-29 20:12:35 +08:00
def MobileNetV3_large_x1_25(pretrained=False, **kwargs):
2021-04-25 19:34:14 +08:00
"""
MobileNetV3_large_x1_25
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `MobileNetV3_large_x1_25` model depends on args.
"""
2021-03-25 15:27:36 +08:00
model = _mobilenet_v3.MobileNetV3_large_x1_25(**kwargs)
if pretrained:
2021-04-06 12:01:02 +08:00
model = _load_pretrained_parameters(model, 'MobileNetV3_large_x1_25')
2021-03-25 15:27:36 +08:00
return model
2021-03-29 20:12:35 +08:00
def MobileNetV3_small_x0_35(pretrained=False, **kwargs):
2021-04-25 19:34:14 +08:00
"""
MobileNetV3_small_x0_35
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `MobileNetV3_small_x0_35` model depends on args.
"""
2021-03-25 15:27:36 +08:00
model = _mobilenet_v3.MobileNetV3_small_x0_35(**kwargs)
if pretrained:
2021-04-06 12:01:02 +08:00
model = _load_pretrained_parameters(model, 'MobileNetV3_small_x0_35')
2021-03-25 15:27:36 +08:00
return model
2021-03-29 20:12:35 +08:00
def MobileNetV3_small_x0_5(pretrained=False, **kwargs):
2021-04-25 19:34:14 +08:00
"""
MobileNetV3_small_x0_5
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `MobileNetV3_small_x0_5` model depends on args.
"""
2021-03-25 15:27:36 +08:00
model = _mobilenet_v3.MobileNetV3_small_x0_5(**kwargs)
if pretrained:
2021-04-06 12:01:02 +08:00
model = _load_pretrained_parameters(model, 'MobileNetV3_small_x0_5')
2021-03-25 15:27:36 +08:00
return model
2021-03-29 20:12:35 +08:00
def MobileNetV3_small_x0_75(pretrained=False, **kwargs):
2021-04-25 19:34:14 +08:00
"""
MobileNetV3_small_x0_75
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `MobileNetV3_small_x0_75` model depends on args.
"""
2021-03-25 15:27:36 +08:00
model = _mobilenet_v3.MobileNetV3_small_x0_75(**kwargs)
if pretrained:
2021-04-06 12:01:02 +08:00
model = _load_pretrained_parameters(model, 'MobileNetV3_small_x0_75')
2021-03-25 15:27:36 +08:00
return model
2021-03-29 20:12:35 +08:00
def MobileNetV3_small_x1_0(pretrained=False, **kwargs):
2021-04-25 19:34:14 +08:00
"""
MobileNetV3_small_x1_0
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `MobileNetV3_small_x1_0` model depends on args.
"""
2021-03-25 15:27:36 +08:00
model = _mobilenet_v3.MobileNetV3_small_x1_0(**kwargs)
if pretrained:
2021-04-06 12:01:02 +08:00
model = _load_pretrained_parameters(model, 'MobileNetV3_small_x1_0')
2021-03-25 15:27:36 +08:00
return model
2021-03-29 20:12:35 +08:00
def MobileNetV3_small_x1_25(pretrained=False, **kwargs):
2021-04-25 19:34:14 +08:00
"""
MobileNetV3_small_x1_25
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `MobileNetV3_small_x1_25` model depends on args.
"""
2021-03-25 15:27:36 +08:00
model = _mobilenet_v3.MobileNetV3_small_x1_25(**kwargs)
if pretrained:
2021-04-06 12:01:02 +08:00
model = _load_pretrained_parameters(model, 'MobileNetV3_small_x1_25')
2021-03-25 15:27:36 +08:00
return model
2021-03-25 15:51:37 +08:00
2021-03-29 20:12:35 +08:00
def ResNeXt101_32x4d(pretrained=False, **kwargs):
2021-04-25 19:34:14 +08:00
"""
ResNeXt101_32x4d
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `ResNeXt101_32x4d` model depends on args.
"""
2021-03-25 15:51:37 +08:00
model = _resnext.ResNeXt101_32x4d(**kwargs)
if pretrained:
2021-04-06 12:01:02 +08:00
model = _load_pretrained_parameters(model, 'ResNeXt101_32x4d')
2021-03-25 15:51:37 +08:00
return model
2021-03-29 20:12:35 +08:00
def ResNeXt101_64x4d(pretrained=False, **kwargs):
2021-04-25 19:34:14 +08:00
"""
ResNeXt101_64x4d
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `ResNeXt101_64x4d` model depends on args.
"""
2021-03-25 15:51:37 +08:00
model = _resnext.ResNeXt101_64x4d(**kwargs)
if pretrained:
2021-04-06 12:01:02 +08:00
model = _load_pretrained_parameters(model, 'ResNeXt101_64x4d')
2021-03-25 15:51:37 +08:00
return model
2021-03-29 20:12:35 +08:00
def ResNeXt152_32x4d(pretrained=False, **kwargs):
2021-04-25 19:34:14 +08:00
"""
ResNeXt152_32x4d
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `ResNeXt152_32x4d` model depends on args.
"""
2021-03-25 15:51:37 +08:00
model = _resnext.ResNeXt152_32x4d(**kwargs)
if pretrained:
2021-04-06 12:01:02 +08:00
model = _load_pretrained_parameters(model, 'ResNeXt152_32x4d')
2021-03-25 15:51:37 +08:00
return model
2021-03-29 20:12:35 +08:00
def ResNeXt152_64x4d(pretrained=False, **kwargs):
2021-04-25 19:34:14 +08:00
"""
ResNeXt152_64x4d
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `ResNeXt152_64x4d` model depends on args.
"""
2021-03-25 15:51:37 +08:00
model = _resnext.ResNeXt152_64x4d(**kwargs)
if pretrained:
2021-04-06 12:01:02 +08:00
model = _load_pretrained_parameters(model, 'ResNeXt152_64x4d')
2021-03-25 15:51:37 +08:00
return model
2021-03-29 20:12:35 +08:00
def ResNeXt50_32x4d(pretrained=False, **kwargs):
2021-04-25 19:34:14 +08:00
"""
ResNeXt50_32x4d
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `ResNeXt50_32x4d` model depends on args.
"""
2021-03-25 15:51:37 +08:00
model = _resnext.ResNeXt50_32x4d(**kwargs)
if pretrained:
2021-04-06 12:01:02 +08:00
model = _load_pretrained_parameters(model, 'ResNeXt50_32x4d')
2021-03-25 15:51:37 +08:00
return model
2021-03-29 20:12:35 +08:00
def ResNeXt50_64x4d(pretrained=False, **kwargs):
2021-04-25 19:34:14 +08:00
"""
ResNeXt50_64x4d
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `ResNeXt50_64x4d` model depends on args.
"""
2021-03-25 15:51:37 +08:00
model = _resnext.ResNeXt50_64x4d(**kwargs)
if pretrained:
2021-04-06 12:01:02 +08:00
model = _load_pretrained_parameters(model, 'ResNeXt50_64x4d')
2021-03-25 15:51:37 +08:00
return model