2020-10-19 13:05:34 +08:00
# Model Library Overview
## Overview
Based on the ImageNet1k classification dataset, the 23 classification network structures supported by PaddleClas and the corresponding 117 image classification pretrained models are shown below. Training trick, a brief introduction to each series of network structures, and performance evaluation will be shown in the corresponding chapters.
## Evaluation environment
* CPU evaluation environment is based on Snapdragon 855 (SD855).
* The GPU evaluation environment is based on V100 and TensorRT, and the evaluation script is as follows.
```shell
#!/usr/bin/env bash
export PYTHONPATH=$PWD:$PYTHONPATH
python tools/infer/predict.py \
--model_file='pretrained/infer/model' \
--params_file='pretrained/infer/params' \
--enable_benchmark=True \
--model_name=ResNet50_vd \
--use_tensorrt=True \
--use_fp16=False \
--batch_size=1
```



> If you think this document is helpful to you, welcome to give a star to our project:[https://github.com/PaddlePaddle/PaddleClas](https://github.com/PaddlePaddle/PaddleClas)
## Pretrained model list and download address
- ResNet and ResNet_vd series
- ResNet series< sup > [[1](#ref1)]</ sup > ([paper link](http://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html))
- [ResNet18 ](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet18_pretrained.tar )
- [ResNet34 ](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_pretrained.tar )
- [ResNet50 ](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar )
- [ResNet101 ](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.tar )
- [ResNet152 ](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet152_pretrained.tar )
- ResNet_vc、ResNet_vd series< sup > [[2](#ref2)]</ sup > ([paper link](https://arxiv.org/abs/1812.01187))
- [ResNet50_vc ](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vc_pretrained.tar )
- [ResNet18_vd ](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet18_vd_pretrained.tar )
- [ResNet34_vd ](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_vd_pretrained.tar )
- [ResNet34_vd_ssld ](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_vd_ssld_pretrained.tar )
- [ResNet50_vd ](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar )
- [ResNet50_vd_v2 ](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_v2_pretrained.tar )
- [ResNet101_vd ](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_pretrained.tar )
- [ResNet152_vd ](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet152_vd_pretrained.tar )
- [ResNet200_vd ](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet200_vd_pretrained.tar )
- [ResNet50_vd_ssld ](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_ssld_pretrained.tar )
- [ResNet50_vd_ssld_v2 ](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_ssld_v2_pretrained.tar )
- [Fix_ResNet50_vd_ssld_v2 ](https://paddle-imagenet-models-name.bj.bcebos.com/Fix_ResNet50_vd_ssld_v2_pretrained.tar )
- [ResNet101_vd_ssld ](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_ssld_pretrained.tar )
- Mobile and Embedded Vision Applications Network series
- MobileNetV3 series< sup > [[3](#ref3)]</ sup > ([paper link](https://arxiv.org/abs/1905.02244))
- [MobileNetV3_large_x0_35 ](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x0_35_pretrained.tar )
- [MobileNetV3_large_x0_5 ](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x0_5_pretrained.tar )
- [MobileNetV3_large_x0_75 ](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x0_75_pretrained.tar )
- [MobileNetV3_large_x1_0 ](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_0_pretrained.tar )
- [MobileNetV3_large_x1_25 ](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_25_pretrained.tar )
- [MobileNetV3_small_x0_35 ](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x0_35_pretrained.tar )
- [MobileNetV3_small_x0_5 ](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x0_5_pretrained.tar )
- [MobileNetV3_small_x0_75 ](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x0_75_pretrained.tar )
- [MobileNetV3_small_x1_0 ](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x1_0_pretrained.tar )
- [MobileNetV3_small_x1_25 ](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x1_25_pretrained.tar )
- [MobileNetV3_large_x1_0_ssld ](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_0_ssld_pretrained.tar )
- [MobileNetV3_large_x1_0_ssld_int8 ](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_0_ssld_int8_pretrained.tar )
- [MobileNetV3_small_x1_0_ssld ](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x1_0_ssld_pretrained.tar )
- MobileNetV2 series< sup > [[4](#ref4)]</ sup > ([paper link](https://arxiv.org/abs/1801.04381))
- [MobileNetV2_x0_25 ](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_25_pretrained.tar )
- [MobileNetV2_x0_5 ](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_5_pretrained.tar )
- [MobileNetV2_x0_75 ](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_75_pretrained.tar )
- [MobileNetV2 ](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar )
- [MobileNetV2_x1_5 ](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x1_5_pretrained.tar )
- [MobileNetV2_x2_0 ](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x2_0_pretrained.tar )
- [MobileNetV2_ssld ](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_ssld_pretrained.tar )
- MobileNetV1 series< sup > [[5](#ref5)]</ sup > ([paper link](https://arxiv.org/abs/1704.04861))
- [MobileNetV1_x0_25 ](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_x0_25_pretrained.tar )
- [MobileNetV1_x0_5 ](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_x0_5_pretrained.tar )
- [MobileNetV1_x0_75 ](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_x0_75_pretrained.tar )
- [MobileNetV1 ](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar )
- [MobileNetV1_ssld ](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_ssld_pretrained.tar )
- ShuffleNetV2 series< sup > [[6](#ref6)]</ sup > ([paper link](https://arxiv.org/abs/1807.11164))
- [ShuffleNetV2_x0_25 ](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x0_25_pretrained.tar )
- [ShuffleNetV2_x0_33 ](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x0_33_pretrained.tar )
- [ShuffleNetV2_x0_5 ](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x0_5_pretrained.tar )
- [ShuffleNetV2 ](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_pretrained.tar )
- [ShuffleNetV2_x1_5 ](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x1_5_pretrained.tar )
- [ShuffleNetV2_x2_0 ](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x2_0_pretrained.tar )
- [ShuffleNetV2_swish ](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_swish_pretrained.tar )
- GhostNet series< sup > [[23](#ref23)]</ sup > ([paper link](https://arxiv.org/pdf/1911.11907.pdf))
- [GhostNet_x0_5 ](https://paddle-imagenet-models-name.bj.bcebos.com/GhostNet_x0_5_pretrained.pdparams )
- [GhostNet_x1_0 ](https://paddle-imagenet-models-name.bj.bcebos.com/GhostNet_x1_0_pretrained.pdparams )
- [GhostNet_x1_3 ](https://paddle-imagenet-models-name.bj.bcebos.com/GhostNet_x1_3_pretrained.pdparams )
- SEResNeXt and Res2Net series
- ResNeXt series< sup > [[7](#ref7)]</ sup > ([paper link](https://arxiv.org/abs/1611.05431))
- [ResNeXt50_32x4d ](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_32x4d_pretrained.tar )
- [ResNeXt50_64x4d ](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_64x4d_pretrained.tar )
- [ResNeXt101_32x4d ](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x4d_pretrained.tar )
- [ResNeXt101_64x4d ](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_64x4d_pretrained.tar )
- [ResNeXt152_32x4d ](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_32x4d_pretrained.tar )
- [ResNeXt152_64x4d ](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_64x4d_pretrained.tar )
- ResNeXt_vd series
- [ResNeXt50_vd_32x4d ](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_vd_32x4d_pretrained.tar )
- [ResNeXt50_vd_64x4d ](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_vd_64x4d_pretrained.tar )
- [ResNeXt101_vd_32x4d ](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_vd_32x4d_pretrained.tar )
- [ResNeXt101_vd_64x4d ](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_vd_64x4d_pretrained.tar )
- [ResNeXt152_vd_32x4d ](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_vd_32x4d_pretrained.tar )
- [ResNeXt152_vd_64x4d ](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_vd_64x4d_pretrained.tar )
- SE_ResNet_vd series< sup > [[8](#ref8)]</ sup > ([paper link](https://arxiv.org/abs/1709.01507))
- [SE_ResNet18_vd ](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNet18_vd_pretrained.tar )
- [SE_ResNet34_vd ](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNet34_vd_pretrained.tar )
- [SE_ResNet50_vd ](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNet50_vd_pretrained.tar )
- SE_ResNeXt series
- [SE_ResNeXt50_32x4d ](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt50_32x4d_pretrained.tar )
- [SE_ResNeXt101_32x4d ](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt101_32x4d_pretrained.tar )
- SE_ResNeXt_vd series
- [SE_ResNeXt50_vd_32x4d ](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt50_vd_32x4d_pretrained.tar )
- [SENet154_vd ](https://paddle-imagenet-models-name.bj.bcebos.com/SENet154_vd_pretrained.tar )
- Res2Net series< sup > [[9](#ref9)]</ sup > ([paper link](https://arxiv.org/abs/1904.01169))
- [Res2Net50_26w_4s ](https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net50_26w_4s_pretrained.tar )
- [Res2Net50_vd_26w_4s ](https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net50_vd_26w_4s_pretrained.tar )
2020-10-21 17:25:28 +08:00
- [Res2Net50_vd_26w_4s_ssld ](https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net50_vd_26w_4s_ssld_pretrained.tar )
2020-10-19 13:05:34 +08:00
- [Res2Net50_14w_8s ](https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net50_14w_8s_pretrained.tar )
- [Res2Net101_vd_26w_4s ](https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net101_vd_26w_4s_pretrained.tar )
2020-10-21 17:25:28 +08:00
- [Res2Net101_vd_26w_4s_ssld ](https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net101_vd_26w_4s_ssld_pretrained.tar )
2020-10-19 13:05:34 +08:00
- [Res2Net200_vd_26w_4s ](https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net200_vd_26w_4s_pretrained.tar )
- [Res2Net200_vd_26w_4s_ssld ](https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net200_vd_26w_4s_ssld_pretrained.tar )
- Inception series
- GoogLeNet series< sup > [[10](#ref10)]</ sup > ([paper link](https://arxiv.org/pdf/1409.4842.pdf))
- [GoogLeNet ](https://paddle-imagenet-models-name.bj.bcebos.com/GoogLeNet_pretrained.tar )
2020-11-09 15:05:58 +08:00
- InceptionV3 series< sup > [[26](#ref26)]</ sup > ([paper link](https://arxiv.org/abs/1512.00567))
- [InceptionV3 ](https://paddle-imagenet-models-name.bj.bcebos.com/InceptionV3_pretrained.tar )
- InceptionV4 series< sup > [[11](#ref11)]</ sup > ([paper link](https://arxiv.org/abs/1602.07261))
2020-10-19 13:05:34 +08:00
- [InceptionV4 ](https://paddle-imagenet-models-name.bj.bcebos.com/InceptionV4_pretrained.tar )
- Xception series< sup > [[12](#ref12)]</ sup > ([paper link](http://openaccess.thecvf.com/content_cvpr_2017/html/Chollet_Xception_Deep_Learning_CVPR_2017_paper.html))
- [Xception41 ](https://paddle-imagenet-models-name.bj.bcebos.com/Xception41_pretrained.tar )
- [Xception41_deeplab ](https://paddle-imagenet-models-name.bj.bcebos.com/Xception41_deeplab_pretrained.tar )
- [Xception65 ](https://paddle-imagenet-models-name.bj.bcebos.com/Xception65_pretrained.tar )
- [Xception65_deeplab ](https://paddle-imagenet-models-name.bj.bcebos.com/Xception65_deeplab_pretrained.tar )
- [Xception71 ](https://paddle-imagenet-models-name.bj.bcebos.com/Xception71_pretrained.tar )
- HRNet series
- HRNet series< sup > [[13](#ref13)]</ sup > ([paper link](https://arxiv.org/abs/1908.07919))
- [HRNet_W18_C ](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W18_C_pretrained.tar )
- [HRNet_W18_C_ssld ](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W18_C_ssld_pretrained.tar )
- [HRNet_W30_C ](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W30_C_pretrained.tar )
- [HRNet_W32_C ](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W32_C_pretrained.tar )
- [HRNet_W40_C ](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W40_C_pretrained.tar )
- [HRNet_W44_C ](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W44_C_pretrained.tar )
- [HRNet_W48_C ](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W48_C_pretrained.tar )
- [HRNet_W48_C_ssld ](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W48_C_ssld_pretrained.tar )
- [HRNet_W64_C ](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W64_C_pretrained.tar )
- DPN and DenseNet series
- DPN series< sup > [[14](#ref14)]</ sup > ([paper link](https://arxiv.org/abs/1707.01629))
- [DPN68 ](https://paddle-imagenet-models-name.bj.bcebos.com/DPN68_pretrained.tar )
- [DPN92 ](https://paddle-imagenet-models-name.bj.bcebos.com/DPN92_pretrained.tar )
- [DPN98 ](https://paddle-imagenet-models-name.bj.bcebos.com/DPN98_pretrained.tar )
- [DPN107 ](https://paddle-imagenet-models-name.bj.bcebos.com/DPN107_pretrained.tar )
- [DPN131 ](https://paddle-imagenet-models-name.bj.bcebos.com/DPN131_pretrained.tar )
- DenseNet series< sup > [[15](#ref15)]</ sup > ([paper link](https://arxiv.org/abs/1608.06993))
- [DenseNet121 ](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet121_pretrained.tar )
- [DenseNet161 ](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet161_pretrained.tar )
- [DenseNet169 ](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet169_pretrained.tar )
- [DenseNet201 ](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet201_pretrained.tar )
- [DenseNet264 ](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet264_pretrained.tar )
- EfficientNet and ResNeXt101_wsl series
- EfficientNet series< sup > [[16](#ref16)]</ sup > ([paper link](https://arxiv.org/abs/1905.11946))
- [EfficientNetB0_small ](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB0_small_pretrained.tar )
- [EfficientNetB0 ](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB0_pretrained.tar )
- [EfficientNetB1 ](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB1_pretrained.tar )
- [EfficientNetB2 ](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB2_pretrained.tar )
- [EfficientNetB3 ](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB3_pretrained.tar )
- [EfficientNetB4 ](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB4_pretrained.tar )
- [EfficientNetB5 ](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB5_pretrained.tar )
- [EfficientNetB6 ](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB6_pretrained.tar )
- [EfficientNetB7 ](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB7_pretrained.tar )
- ResNeXt101_wsl series< sup > [[17](#ref17)]</ sup > ([paper link](https://arxiv.org/abs/1805.00932))
- [ResNeXt101_32x8d_wsl ](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x8d_wsl_pretrained.tar )
- [ResNeXt101_32x16d_wsl ](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x16d_wsl_pretrained.tar )
- [ResNeXt101_32x32d_wsl ](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x32d_wsl_pretrained.tar )
- [ResNeXt101_32x48d_wsl ](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x48d_wsl_pretrained.tar )
- [Fix_ResNeXt101_32x48d_wsl ](https://paddle-imagenet-models-name.bj.bcebos.com/Fix_ResNeXt101_32x48d_wsl_pretrained.tar )
- ResNeSt and RegNet series
- ResNeSt series< sup > [[24](#ref24)]</ sup > ([paper link](https://arxiv.org/abs/2004.08955))
- [ResNeSt50_fast_1s1x64d ](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeSt50_fast_1s1x64d_pretrained.pdparams )
- [ResNeSt50 ](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeSt50_pretrained.pdparams )
- RegNet series< sup > [[25](#ref25)]</ sup > ([paper link](https://arxiv.org/abs/2003.13678))
- [RegNetX_4GF ](https://paddle-imagenet-models-name.bj.bcebos.com/RegNetX_4GF_pretrained.pdparams )
- Other models
- AlexNet series< sup > [[18](#ref18)]</ sup > ([paper link](https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf))
- [AlexNet ](https://paddle-imagenet-models-name.bj.bcebos.com/AlexNet_pretrained.tar )
- SqueezeNet series< sup > [[19](#ref19)]</ sup > ([paper link](https://arxiv.org/abs/1602.07360))
- [SqueezeNet1_0 ](https://paddle-imagenet-models-name.bj.bcebos.com/SqueezeNet1_0_pretrained.tar )
- [SqueezeNet1_1 ](https://paddle-imagenet-models-name.bj.bcebos.com/SqueezeNet1_1_pretrained.tar )
- VGG series< sup > [[20](#ref20)]</ sup > ([paper link](https://arxiv.org/abs/1409.1556))
- [VGG11 ](https://paddle-imagenet-models-name.bj.bcebos.com/VGG11_pretrained.tar )
- [VGG13 ](https://paddle-imagenet-models-name.bj.bcebos.com/VGG13_pretrained.tar )
- [VGG16 ](https://paddle-imagenet-models-name.bj.bcebos.com/VGG16_pretrained.tar )
- [VGG19 ](https://paddle-imagenet-models-name.bj.bcebos.com/VGG19_pretrained.tar )
- DarkNet series< sup > [[21](#ref21)]</ sup > ([paper link](https://arxiv.org/abs/1506.02640))
- [DarkNet53 ](https://paddle-imagenet-models-name.bj.bcebos.com/DarkNet53_ImageNet1k_pretrained.tar )
- ACNet series< sup > [[22](#ref22)]</ sup > ([paper link](https://arxiv.org/abs/1908.03930))
- [ResNet50_ACNet_deploy ](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_ACNet_deploy_pretrained.tar )
**Note**: The pretrained models of EfficientNetB1-B7 in the above models are transferred from [pytorch version of EfficientNet ](https://github.com/lukemelas/EfficientNet-PyTorch ), and the ResNeXt101_wsl series of pretrained models are transferred from [Official repo ](https://github.com/facebookresearch/WSL-Images ), the remaining pretrained models are obtained by training with the PaddlePaddle framework, and the corresponding training hyperparameters are given in configs.
## References
< a name = "ref1" > [1]< / a > He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.
< a name = "ref2" > [2]< / a > He T, Zhang Z, Zhang H, et al. Bag of tricks for image classification with convolutional neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 558-567.
< a name = "ref3" > [3]< / a > Howard A, Sandler M, Chu G, et al. Searching for mobilenetv3[C]//Proceedings of the IEEE International Conference on Computer Vision. 2019: 1314-1324.
< a name = "ref4" > [4]< / a > Sandler M, Howard A, Zhu M, et al. Mobilenetv2: Inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 4510-4520.
< a name = "ref5" > [5]< / a > Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv:1704.04861, 2017.
< a name = "ref6" > [6]< / a > Ma N, Zhang X, Zheng H T, et al. Shufflenet v2: Practical guidelines for efficient cnn architecture design[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018: 116-131.
< a name = "ref7" > [7]< / a > Xie S, Girshick R, Dollár P, et al. Aggregated residual transformations for deep neural networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 1492-1500.
< a name = "ref8" > [8]< / a > Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 7132-7141.
< a name = "ref9" > [9]< / a > Gao S, Cheng M M, Zhao K, et al. Res2net: A new multi-scale backbone architecture[J]. IEEE transactions on pattern analysis and machine intelligence, 2019.
< a name = "ref10" > [10]< / a > Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 1-9.
< a name = "ref11" > [11]< / a > Szegedy C, Ioffe S, Vanhoucke V, et al. Inception-v4, inception-resnet and the impact of residual connections on learning[C]//Thirty-first AAAI conference on artificial intelligence. 2017.
< a name = "ref12" > [12]< / a > Chollet F. Xception: Deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 1251-1258.
< a name = "ref13" > [13]< / a > Wang J, Sun K, Cheng T, et al. Deep high-resolution representation learning for visual recognition[J]. arXiv preprint arXiv:1908.07919, 2019.
< a name = "ref14" > [14]< / a > Chen Y, Li J, Xiao H, et al. Dual path networks[C]//Advances in neural information processing systems. 2017: 4467-4475.
< a name = "ref15" > [15]< / a > Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 4700-4708.
< a name = "ref16" > [16]< / a > Tan M, Le Q V. Efficientnet: Rethinking model scaling for convolutional neural networks[J]. arXiv preprint arXiv:1905.11946, 2019.
< a name = "ref17" > [17]< / a > Mahajan D, Girshick R, Ramanathan V, et al. Exploring the limits of weakly supervised pretraining[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018: 181-196.
< a name = "ref18" > [18]< / a > Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[C]//Advances in neural information processing systems. 2012: 1097-1105.
< a name = "ref19" > [19]< / a > Iandola F N, Han S, Moskewicz M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size [ J ] . arXiv preprint arXiv:1602 . 07360 , 2016 .
< a name = "ref20" > [20]< / a > Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014.
< a name = "ref21" > [21]< / a > Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 779-788.
< a name = "ref22" > [22]< / a > Ding X, Guo Y, Ding G, et al. Acnet: Strengthening the kernel skeletons for powerful cnn via asymmetric convolution blocks[C]//Proceedings of the IEEE International Conference on Computer Vision. 2019: 1911-1920.
< a name = "ref23" > [23]< / a > Han K, Wang Y, Tian Q, et al. GhostNet: More features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 1580-1589.
< a name = "ref24" > [24]< / a > Zhang H, Wu C, Zhang Z, et al. Resnest: Split-attention networks[J]. arXiv preprint arXiv:2004.08955, 2020.
< a name = "ref25" > [25]< / a > Radosavovic I, Kosaraju R P, Girshick R, et al. Designing network design spaces[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 10428-10436.
2020-11-09 15:05:58 +08:00
< a name = "ref26" > [26]< / a > C.Szegedy, V.Vanhoucke, S.Ioffe, J.Shlens, and Z.Wojna. Rethinking the inception architecture for computer vision. arXiv preprint arXiv:1512.00567, 2015.