2022-09-16 14:41:19 +08:00
|
|
|
|
# paddle2onnx 模型转化与预测
|
|
|
|
|
|
|
|
|
|
## 目录
|
|
|
|
|
|
|
|
|
|
- [paddle2onnx 模型转化与预测](#paddle2onnx-模型转化与预测)
|
|
|
|
|
- [1. 环境准备](#1-环境准备)
|
|
|
|
|
- [2. 模型转换](#2-模型转换)
|
|
|
|
|
- [3. onnx 预测](#3-onnx-预测)
|
|
|
|
|
|
|
|
|
|
## 1. 环境准备
|
|
|
|
|
|
|
|
|
|
需要准备 Paddle2ONNX 模型转化环境,和 ONNX 模型预测环境。
|
|
|
|
|
|
|
|
|
|
Paddle2ONNX 支持将 PaddlePaddle inference 模型格式转化到 ONNX 模型格式,算子目前稳定支持导出 ONNX Opset 9~11。
|
|
|
|
|
更多细节可参考 [Paddle2ONNX](https://github.com/PaddlePaddle/Paddle2ONNX#paddle2onnx)
|
|
|
|
|
|
|
|
|
|
- 安装 Paddle2ONNX
|
|
|
|
|
```shell
|
|
|
|
|
python3.7 -m pip install paddle2onnx
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
- 安装 ONNX 推理引擎
|
|
|
|
|
```shell
|
|
|
|
|
python3.7 -m pip install onnxruntime
|
|
|
|
|
```
|
|
|
|
|
下面以 ResNet50_vd 为例,介绍如何将 PaddlePaddle inference 模型转换为 ONNX 模型,并基于 ONNX 引擎预测。
|
|
|
|
|
|
|
|
|
|
## 2. 模型转换
|
|
|
|
|
|
|
|
|
|
- ResNet50_vd inference模型下载
|
|
|
|
|
|
|
|
|
|
```shell
|
|
|
|
|
cd deploy
|
|
|
|
|
mkdir models && cd models
|
|
|
|
|
wget -nc https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet50_vd_infer.tar && tar xf ResNet50_vd_infer.tar
|
|
|
|
|
cd ..
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
- 模型转换
|
|
|
|
|
|
|
|
|
|
使用 Paddle2ONNX 将 Paddle 静态图模型转换为 ONNX 模型格式:
|
|
|
|
|
```shell
|
|
|
|
|
paddle2onnx --model_dir=./models/ResNet50_vd_infer/ \
|
|
|
|
|
--model_filename=inference.pdmodel \
|
|
|
|
|
--params_filename=inference.pdiparams \
|
|
|
|
|
--save_file=./models/ResNet50_vd_infer/inference.onnx \
|
|
|
|
|
--opset_version=10 \
|
|
|
|
|
--enable_onnx_checker=True
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
转换完毕后,生成的ONNX 模型 `inference.onnx` 会被保存在 `./models/ResNet50_vd_infer/` 路径下
|
|
|
|
|
|
|
|
|
|
## 3. onnx 预测
|
|
|
|
|
|
|
|
|
|
执行如下命令:
|
|
|
|
|
```shell
|
|
|
|
|
python3.7 python/predict_cls.py \
|
|
|
|
|
-c configs/inference_cls.yaml \
|
|
|
|
|
-o Global.use_onnx=True \
|
|
|
|
|
-o Global.use_gpu=False \
|
|
|
|
|
-o Global.inference_model_dir=./models/ResNet50_vd_infer
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
结果如下:
|
|
|
|
|
```
|
|
|
|
|
ILSVRC2012_val_00000010.jpeg: class id(s): [153, 204, 229, 332, 155], score(s): [0.69, 0.10, 0.02, 0.01, 0.01], label_name(s): ['Maltese dog, Maltese terrier, Maltese', 'Lhasa, Lhasa apso', 'Old English sheepdog, bobtail', 'Angora, Angora rabbit', 'Shih-Tzu']
|
|
|
|
|
```
|