198 lines
6.9 KiB
Python
198 lines
6.9 KiB
Python
|
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import argparse
|
||
|
import os
|
||
|
import sys
|
||
|
__dir__ = os.path.dirname(os.path.abspath(__file__))
|
||
|
sys.path.append(__dir__)
|
||
|
sys.path.append(os.path.abspath(os.path.join(__dir__, '../../')))
|
||
|
|
||
|
import paddle
|
||
|
from paddle.distributed import fleet
|
||
|
from visualdl import LogWriter
|
||
|
|
||
|
from ppcls.data import build_dataloader
|
||
|
from ppcls.utils.config import get_config, print_config
|
||
|
from ppcls.utils import logger
|
||
|
from ppcls.utils.logger import init_logger
|
||
|
from ppcls.static.save_load import init_model, save_model
|
||
|
from ppcls.static import program
|
||
|
|
||
|
|
||
|
def parse_args():
|
||
|
parser = argparse.ArgumentParser("PaddleClas train script")
|
||
|
parser.add_argument(
|
||
|
'-c',
|
||
|
'--config',
|
||
|
type=str,
|
||
|
default='configs/ResNet/ResNet50.yaml',
|
||
|
help='config file path')
|
||
|
parser.add_argument(
|
||
|
'-o',
|
||
|
'--override',
|
||
|
action='append',
|
||
|
default=[],
|
||
|
help='config options to be overridden')
|
||
|
args = parser.parse_args()
|
||
|
return args
|
||
|
|
||
|
|
||
|
def main(args):
|
||
|
"""
|
||
|
all the config of training paradigm should be in config["Global"]
|
||
|
"""
|
||
|
config = get_config(args.config, overrides=args.override, show=False)
|
||
|
global_config = config["Global"]
|
||
|
|
||
|
mode = "train"
|
||
|
|
||
|
log_file = os.path.join(global_config['output_dir'],
|
||
|
config["Arch"]["name"], f"{mode}.log")
|
||
|
init_logger(name='root', log_file=log_file)
|
||
|
print_config(config)
|
||
|
|
||
|
if global_config.get("is_distributed", True):
|
||
|
fleet.init(is_collective=True)
|
||
|
# assign the device
|
||
|
use_gpu = global_config.get("use_gpu", True)
|
||
|
# amp related config
|
||
|
if 'AMP' in config:
|
||
|
AMP_RELATED_FLAGS_SETTING = {
|
||
|
'FLAGS_cudnn_exhaustive_search': "1",
|
||
|
'FLAGS_conv_workspace_size_limit': "1500",
|
||
|
'FLAGS_cudnn_batchnorm_spatial_persistent': "1",
|
||
|
'FLAGS_max_indevice_grad_add': "8",
|
||
|
"FLAGS_cudnn_batchnorm_spatial_persistent": "1",
|
||
|
}
|
||
|
for k in AMP_RELATED_FLAGS_SETTING:
|
||
|
os.environ[k] = AMP_RELATED_FLAGS_SETTING[k]
|
||
|
|
||
|
use_xpu = global_config.get("use_xpu", False)
|
||
|
assert (
|
||
|
use_gpu and use_xpu
|
||
|
) is not True, "gpu and xpu can not be true in the same time in static mode!"
|
||
|
|
||
|
if use_gpu:
|
||
|
device = paddle.set_device('gpu')
|
||
|
elif use_xpu:
|
||
|
device = paddle.set_device('xpu')
|
||
|
else:
|
||
|
device = paddle.set_device('cpu')
|
||
|
|
||
|
# visualDL
|
||
|
vdl_writer = None
|
||
|
if global_config["use_visualdl"]:
|
||
|
vdl_dir = os.path.join(global_config["output_dir"], "vdl")
|
||
|
vdl_writer = LogWriter(vdl_dir)
|
||
|
|
||
|
# build dataloader
|
||
|
eval_dataloader = None
|
||
|
use_dali = global_config.get('use_dali', False)
|
||
|
|
||
|
train_dataloader = build_dataloader(
|
||
|
config["DataLoader"], "Train", device=device, use_dali=use_dali)
|
||
|
if global_config["eval_during_train"]:
|
||
|
eval_dataloader = build_dataloader(
|
||
|
config["DataLoader"], "Eval", device=device, use_dali=use_dali)
|
||
|
|
||
|
step_each_epoch = len(train_dataloader)
|
||
|
|
||
|
# startup_prog is used to do some parameter init work,
|
||
|
# and train prog is used to hold the network
|
||
|
startup_prog = paddle.static.Program()
|
||
|
train_prog = paddle.static.Program()
|
||
|
|
||
|
best_top1_acc = 0.0 # best top1 acc record
|
||
|
|
||
|
train_fetchs, lr_scheduler, train_feeds, optimizer = program.build(
|
||
|
config,
|
||
|
train_prog,
|
||
|
startup_prog,
|
||
|
step_each_epoch=step_each_epoch,
|
||
|
is_train=True,
|
||
|
is_distributed=global_config.get("is_distributed", True))
|
||
|
|
||
|
if global_config["eval_during_train"]:
|
||
|
eval_prog = paddle.static.Program()
|
||
|
eval_fetchs, _, eval_feeds, _ = program.build(
|
||
|
config,
|
||
|
eval_prog,
|
||
|
startup_prog,
|
||
|
is_train=False,
|
||
|
is_distributed=global_config.get("is_distributed", True))
|
||
|
# clone to prune some content which is irrelevant in eval_prog
|
||
|
eval_prog = eval_prog.clone(for_test=True)
|
||
|
|
||
|
# create the "Executor" with the statement of which device
|
||
|
exe = paddle.static.Executor(device)
|
||
|
# Parameter initialization
|
||
|
exe.run(startup_prog)
|
||
|
# load pretrained models or checkpoints
|
||
|
init_model(global_config, train_prog, exe)
|
||
|
|
||
|
if 'AMP' in config and config.AMP.get("use_pure_fp16", False):
|
||
|
optimizer.amp_init(
|
||
|
device,
|
||
|
scope=paddle.static.global_scope(),
|
||
|
test_program=eval_prog
|
||
|
if global_config["eval_during_train"] else None)
|
||
|
|
||
|
if not global_config.get("is_distributed", True):
|
||
|
compiled_train_prog = program.compile(
|
||
|
config, train_prog, loss_name=train_fetchs["loss"][0].name)
|
||
|
else:
|
||
|
compiled_train_prog = train_prog
|
||
|
|
||
|
if eval_dataloader is not None:
|
||
|
compiled_eval_prog = program.compile(config, eval_prog)
|
||
|
|
||
|
for epoch_id in range(global_config["epochs"]):
|
||
|
# 1. train with train dataset
|
||
|
program.run(train_dataloader, exe, compiled_train_prog, train_feeds,
|
||
|
train_fetchs, epoch_id, 'train', config, vdl_writer,
|
||
|
lr_scheduler)
|
||
|
# 2. evaate with eval dataset
|
||
|
if global_config["eval_during_train"] and epoch_id % global_config[
|
||
|
"eval_interval"] == 0:
|
||
|
top1_acc = program.run(eval_dataloader, exe, compiled_eval_prog,
|
||
|
eval_feeds, eval_fetchs, epoch_id, "eval",
|
||
|
config)
|
||
|
if top1_acc > best_top1_acc:
|
||
|
best_top1_acc = top1_acc
|
||
|
message = "The best top1 acc {:.5f}, in epoch: {:d}".format(
|
||
|
best_top1_acc, epoch_id)
|
||
|
logger.info(message)
|
||
|
if epoch_id % global_config["save_interval"] == 0:
|
||
|
|
||
|
model_path = os.path.join(global_config["output_dir"],
|
||
|
config["Arch"]["name"])
|
||
|
save_model(train_prog, model_path, "best_model")
|
||
|
|
||
|
# 3. save the persistable model
|
||
|
if epoch_id % global_config["save_interval"] == 0:
|
||
|
model_path = os.path.join(global_config["output_dir"],
|
||
|
config["Arch"]["name"])
|
||
|
save_model(train_prog, model_path, epoch_id)
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
paddle.enable_static()
|
||
|
args = parse_args()
|
||
|
main(args)
|