PaddleClas/ppcls/arch/backbone/legendary_models/esnet.py

370 lines
12 KiB
Python
Raw Normal View History

2021-11-11 14:00:32 +08:00
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import, division, print_function
import math
import paddle
from paddle import ParamAttr, reshape, transpose, concat, split
import paddle.nn as nn
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
2021-11-11 20:51:58 +08:00
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D
2021-11-11 14:00:32 +08:00
from paddle.nn.initializer import KaimingNormal
from paddle.regularizer import L2Decay
2022-08-17 22:34:06 +08:00
from ..base.theseus_layer import TheseusLayer
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
2021-11-11 14:00:32 +08:00
MODEL_URLS = {
"ESNet_x0_25":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ESNet_x0_25_pretrained.pdparams",
"ESNet_x0_5":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ESNet_x0_5_pretrained.pdparams",
"ESNet_x0_75":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ESNet_x0_75_pretrained.pdparams",
"ESNet_x1_0":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ESNet_x1_0_pretrained.pdparams",
}
MODEL_STAGES_PATTERN = {"ESNet": ["blocks[2]", "blocks[9]", "blocks[12]"]}
2021-11-11 14:00:32 +08:00
__all__ = list(MODEL_URLS.keys())
def channel_shuffle(x, groups):
batch_size, num_channels, height, width = x.shape[0:4]
channels_per_group = num_channels // groups
x = reshape(
x=x, shape=[batch_size, groups, channels_per_group, height, width])
x = transpose(x=x, perm=[0, 2, 1, 3, 4])
x = reshape(x=x, shape=[batch_size, num_channels, height, width])
return x
def make_divisible(v, divisor=8, min_value=None):
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
if new_v < 0.9 * v:
new_v += divisor
return new_v
class ConvBNLayer(TheseusLayer):
2021-11-11 20:51:58 +08:00
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride=1,
groups=1,
if_act=True):
2021-11-11 14:00:32 +08:00
super().__init__()
self.conv = Conv2D(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=(kernel_size - 1) // 2,
groups=groups,
weight_attr=ParamAttr(initializer=KaimingNormal()),
bias_attr=False)
self.bn = BatchNorm(
out_channels,
param_attr=ParamAttr(regularizer=L2Decay(0.0)),
bias_attr=ParamAttr(regularizer=L2Decay(0.0)))
self.if_act = if_act
self.hardswish = nn.Hardswish()
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
if self.if_act:
x = self.hardswish(x)
return x
2021-11-11 20:51:58 +08:00
2021-11-11 14:00:32 +08:00
class SEModule(TheseusLayer):
def __init__(self, channel, reduction=4):
super().__init__()
self.avg_pool = AdaptiveAvgPool2D(1)
self.conv1 = Conv2D(
in_channels=channel,
out_channels=channel // reduction,
kernel_size=1,
stride=1,
padding=0)
self.relu = nn.ReLU()
self.conv2 = Conv2D(
in_channels=channel // reduction,
out_channels=channel,
kernel_size=1,
stride=1,
padding=0)
self.hardsigmoid = nn.Hardsigmoid()
def forward(self, x):
identity = x
x = self.avg_pool(x)
x = self.conv1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.hardsigmoid(x)
x = paddle.multiply(x=identity, y=x)
2021-11-11 20:51:58 +08:00
return x
2021-11-11 14:00:32 +08:00
class ESBlock1(TheseusLayer):
2021-11-11 20:51:58 +08:00
def __init__(self, in_channels, out_channels):
2021-11-11 14:00:32 +08:00
super().__init__()
self.pw_1_1 = ConvBNLayer(
in_channels=in_channels // 2,
out_channels=out_channels // 2,
kernel_size=1,
stride=1)
self.dw_1 = ConvBNLayer(
in_channels=out_channels // 2,
out_channels=out_channels // 2,
kernel_size=3,
stride=1,
groups=out_channels // 2,
if_act=False)
self.se = SEModule(out_channels)
self.pw_1_2 = ConvBNLayer(
in_channels=out_channels,
out_channels=out_channels // 2,
kernel_size=1,
stride=1)
def forward(self, x):
x1, x2 = split(
2021-11-11 20:51:58 +08:00
x, num_or_sections=[x.shape[1] // 2, x.shape[1] // 2], axis=1)
2021-11-11 14:00:32 +08:00
x2 = self.pw_1_1(x2)
x3 = self.dw_1(x2)
x3 = concat([x2, x3], axis=1)
x3 = self.se(x3)
x3 = self.pw_1_2(x3)
x = concat([x1, x3], axis=1)
return channel_shuffle(x, 2)
class ESBlock2(TheseusLayer):
2021-11-11 20:51:58 +08:00
def __init__(self, in_channels, out_channels):
2021-11-11 14:00:32 +08:00
super().__init__()
# branch1
self.dw_1 = ConvBNLayer(
in_channels=in_channels,
out_channels=in_channels,
kernel_size=3,
stride=2,
groups=in_channels,
if_act=False)
self.pw_1 = ConvBNLayer(
in_channels=in_channels,
out_channels=out_channels // 2,
kernel_size=1,
stride=1)
# branch2
self.pw_2_1 = ConvBNLayer(
in_channels=in_channels,
out_channels=out_channels // 2,
kernel_size=1)
self.dw_2 = ConvBNLayer(
in_channels=out_channels // 2,
out_channels=out_channels // 2,
kernel_size=3,
stride=2,
groups=out_channels // 2,
if_act=False)
self.se = SEModule(out_channels // 2)
self.pw_2_2 = ConvBNLayer(
in_channels=out_channels // 2,
out_channels=out_channels // 2,
kernel_size=1)
self.concat_dw = ConvBNLayer(
in_channels=out_channels,
out_channels=out_channels,
kernel_size=3,
groups=out_channels)
self.concat_pw = ConvBNLayer(
2021-11-11 20:51:58 +08:00
in_channels=out_channels, out_channels=out_channels, kernel_size=1)
2021-11-11 14:00:32 +08:00
def forward(self, x):
x1 = self.dw_1(x)
x1 = self.pw_1(x1)
x2 = self.pw_2_1(x)
x2 = self.dw_2(x2)
x2 = self.se(x2)
x2 = self.pw_2_2(x2)
x = concat([x1, x2], axis=1)
x = self.concat_dw(x)
x = self.concat_pw(x)
return x
class ESNet(TheseusLayer):
2021-11-11 20:51:58 +08:00
def __init__(self,
stages_pattern,
2021-11-11 20:51:58 +08:00
class_num=1000,
scale=1.0,
dropout_prob=0.2,
class_expand=1280,
return_patterns=None,
return_stages=None):
2021-11-11 14:00:32 +08:00
super().__init__()
self.scale = scale
self.class_num = class_num
self.class_expand = class_expand
stage_repeats = [3, 7, 3]
2021-11-11 20:51:58 +08:00
stage_out_channels = [
-1, 24, make_divisible(116 * scale), make_divisible(232 * scale),
make_divisible(464 * scale), 1024
]
2021-11-11 14:00:32 +08:00
self.conv1 = ConvBNLayer(
in_channels=3,
out_channels=stage_out_channels[1],
kernel_size=3,
stride=2)
self.max_pool = MaxPool2D(kernel_size=3, stride=2, padding=1)
block_list = []
for stage_id, num_repeat in enumerate(stage_repeats):
2021-11-11 20:51:58 +08:00
for i in range(num_repeat):
2021-11-11 14:00:32 +08:00
if i == 0:
block = ESBlock2(
2021-11-11 20:51:58 +08:00
in_channels=stage_out_channels[stage_id + 1],
out_channels=stage_out_channels[stage_id + 2])
2021-11-11 14:00:32 +08:00
else:
block = ESBlock1(
2021-11-11 20:51:58 +08:00
in_channels=stage_out_channels[stage_id + 2],
out_channels=stage_out_channels[stage_id + 2])
2021-11-11 14:00:32 +08:00
block_list.append(block)
self.blocks = nn.Sequential(*block_list)
2021-11-11 20:51:58 +08:00
2021-11-11 14:00:32 +08:00
self.conv2 = ConvBNLayer(
in_channels=stage_out_channels[-2],
out_channels=stage_out_channels[-1],
kernel_size=1)
self.avg_pool = AdaptiveAvgPool2D(1)
self.last_conv = Conv2D(
in_channels=stage_out_channels[-1],
out_channels=self.class_expand,
kernel_size=1,
stride=1,
padding=0,
bias_attr=False)
self.hardswish = nn.Hardswish()
self.dropout = Dropout(p=dropout_prob, mode="downscale_in_infer")
self.flatten = nn.Flatten(start_axis=1, stop_axis=-1)
self.fc = Linear(self.class_expand, self.class_num)
super().init_res(
stages_pattern,
return_patterns=return_patterns,
return_stages=return_stages)
2021-11-11 14:00:32 +08:00
def forward(self, x):
x = self.conv1(x)
x = self.max_pool(x)
x = self.blocks(x)
x = self.conv2(x)
x = self.avg_pool(x)
x = self.last_conv(x)
x = self.hardswish(x)
x = self.dropout(x)
x = self.flatten(x)
x = self.fc(x)
2021-11-11 20:51:58 +08:00
return x
2021-11-11 14:00:32 +08:00
def _load_pretrained(pretrained, model, model_url, use_ssld):
if pretrained is False:
pass
elif pretrained is True:
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
elif isinstance(pretrained, str):
load_dygraph_pretrain(model, pretrained)
else:
raise RuntimeError(
"pretrained type is not available. Please use `string` or `boolean` type."
2021-11-11 20:51:58 +08:00
)
2021-11-11 14:00:32 +08:00
def ESNet_x0_25(pretrained=False, use_ssld=False, **kwargs):
"""
ESNet_x0_25
Args:
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
If str, means the path of the pretrained model.
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
Returns:
model: nn.Layer. Specific `ESNet_x0_25` model depends on args.
"""
model = ESNet(
scale=0.25, stages_pattern=MODEL_STAGES_PATTERN["ESNet"], **kwargs)
2021-11-11 14:00:32 +08:00
_load_pretrained(pretrained, model, MODEL_URLS["ESNet_x0_25"], use_ssld)
2021-11-11 20:51:58 +08:00
return model
2021-11-11 14:00:32 +08:00
def ESNet_x0_5(pretrained=False, use_ssld=False, **kwargs):
"""
ESNet_x0_5
Args:
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
If str, means the path of the pretrained model.
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
Returns:
model: nn.Layer. Specific `ESNet_x0_5` model depends on args.
"""
model = ESNet(
scale=0.5, stages_pattern=MODEL_STAGES_PATTERN["ESNet"], **kwargs)
2021-11-11 14:00:32 +08:00
_load_pretrained(pretrained, model, MODEL_URLS["ESNet_x0_5"], use_ssld)
return model
def ESNet_x0_75(pretrained=False, use_ssld=False, **kwargs):
"""
ESNet_x0_75
Args:
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
If str, means the path of the pretrained model.
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
Returns:
model: nn.Layer. Specific `ESNet_x0_75` model depends on args.
"""
model = ESNet(
scale=0.75, stages_pattern=MODEL_STAGES_PATTERN["ESNet"], **kwargs)
2021-11-11 14:00:32 +08:00
_load_pretrained(pretrained, model, MODEL_URLS["ESNet_x0_75"], use_ssld)
return model
def ESNet_x1_0(pretrained=False, use_ssld=False, **kwargs):
"""
ESNet_x1_0
Args:
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
If str, means the path of the pretrained model.
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
Returns:
model: nn.Layer. Specific `ESNet_x1_0` model depends on args.
"""
model = ESNet(
scale=1.0, stages_pattern=MODEL_STAGES_PATTERN["ESNet"], **kwargs)
2021-11-11 14:00:32 +08:00
_load_pretrained(pretrained, model, MODEL_URLS["ESNet_x1_0"], use_ssld)
return model