PaddleClas/tools/train.py

161 lines
5.8 KiB
Python
Raw Normal View History

2020-04-19 19:00:25 +08:00
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
2020-04-09 02:16:30 +08:00
#
2020-04-19 19:00:25 +08:00
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
2020-04-09 02:16:30 +08:00
#
# http://www.apache.org/licenses/LICENSE-2.0
#
2020-04-19 19:00:25 +08:00
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
2020-04-21 00:49:09 +08:00
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
2020-04-09 02:16:30 +08:00
import argparse
import os
2020-09-19 14:32:49 +08:00
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../')))
2020-08-06 19:34:15 +08:00
from sys import version_info
2020-04-09 02:16:30 +08:00
import paddle
2020-04-09 02:16:30 +08:00
import paddle.fluid as fluid
2020-04-20 21:16:04 +08:00
from paddle.fluid.incubate.fleet.base import role_maker
from paddle.fluid.incubate.fleet.collective import fleet
2020-04-09 02:16:30 +08:00
from ppcls.data import Reader
from ppcls.utils.config import get_config
2020-04-21 00:49:09 +08:00
from ppcls.utils.save_load import init_model, save_model
2020-04-27 10:30:09 +08:00
from ppcls.utils import logger
2020-04-21 00:49:09 +08:00
import program
2020-04-09 02:16:30 +08:00
def parse_args():
parser = argparse.ArgumentParser("PaddleClas train script")
parser.add_argument(
'-c',
'--config',
type=str,
2020-04-17 21:03:06 +08:00
default='configs/ResNet/ResNet50.yaml',
2020-04-09 02:16:30 +08:00
help='config file path')
2020-05-29 17:06:35 +08:00
parser.add_argument(
'--vdl_dir',
type=str,
2020-05-29 21:56:27 +08:00
default=None,
2020-05-29 17:06:35 +08:00
help='VisualDL logging directory for image.')
2020-04-09 02:16:30 +08:00
parser.add_argument(
'-o',
'--override',
action='append',
default=[],
help='config options to be overridden')
args = parser.parse_args()
return args
def main(args):
role = role_maker.PaddleCloudRoleMaker(is_collective=True)
fleet.init(role)
config = get_config(args.config, overrides=args.override, show=True)
2020-04-19 17:47:19 +08:00
# assign the place
gpu_id = int(os.environ.get('FLAGS_selected_gpus', 0))
place = fluid.CUDAPlace(gpu_id)
2020-04-09 02:16:30 +08:00
2020-04-19 17:47:19 +08:00
# startup_prog is used to do some parameter init work,
# and train prog is used to hold the network
2020-04-09 02:16:30 +08:00
startup_prog = fluid.Program()
train_prog = fluid.Program()
2020-05-06 16:35:11 +08:00
best_top1_acc = 0.0 # best top1 acc record
2020-04-27 10:30:09 +08:00
2020-06-04 12:07:38 +08:00
if not config.get('use_ema'):
train_dataloader, train_fetchs = program.build(
config, train_prog, startup_prog, is_train=True)
else:
train_dataloader, train_fetchs, ema = program.build(
config, train_prog, startup_prog, is_train=True)
2020-04-09 02:16:30 +08:00
if config.validate:
valid_prog = fluid.Program()
valid_dataloader, valid_fetchs = program.build(
config, valid_prog, startup_prog, is_train=False)
2020-04-19 17:47:19 +08:00
# clone to prune some content which is irrelevant in valid_prog
2020-04-09 02:16:30 +08:00
valid_prog = valid_prog.clone(for_test=True)
2020-04-19 19:00:25 +08:00
# create the "Executor" with the statement of which place
2020-06-04 12:07:38 +08:00
exe = fluid.Executor(place)
# Parameter initialization
2020-04-09 02:16:30 +08:00
exe.run(startup_prog)
2020-06-04 12:07:38 +08:00
# load model from 1. checkpoint to resume training, 2. pretrained model to finetune
2020-04-09 02:16:30 +08:00
init_model(config, train_prog, exe)
train_reader = Reader(config, 'train')()
train_dataloader.set_sample_list_generator(train_reader, place)
if config.validate:
valid_reader = Reader(config, 'valid')()
valid_dataloader.set_sample_list_generator(valid_reader, place)
2020-04-26 09:35:49 +08:00
compiled_valid_prog = program.compile(config, valid_prog)
2020-04-09 02:16:30 +08:00
compiled_train_prog = fleet.main_program
2020-06-09 15:22:11 +08:00
2020-08-06 19:34:15 +08:00
vdl_writer = None
2020-06-09 15:22:11 +08:00
if args.vdl_dir:
2020-08-06 19:34:15 +08:00
if version_info.major == 2:
logger.info(
"visualdl is just supported for python3, so it is disabled in python2..."
)
else:
from visualdl import LogWriter
vdl_writer = LogWriter(args.vdl_dir)
2020-05-29 21:52:43 +08:00
2020-04-09 02:16:30 +08:00
for epoch_id in range(config.epochs):
2020-04-19 17:47:19 +08:00
# 1. train with train dataset
2020-04-09 02:16:30 +08:00
program.run(train_dataloader, exe, compiled_train_prog, train_fetchs,
2020-06-30 16:00:51 +08:00
epoch_id, 'train', config, vdl_writer)
2020-04-28 16:19:14 +08:00
if int(os.getenv("PADDLE_TRAINER_ID", 0)) == 0:
2020-04-27 19:02:11 +08:00
# 2. validate with validate dataset
if config.validate and epoch_id % config.valid_interval == 0:
2020-05-06 18:24:52 +08:00
if config.get('use_ema'):
logger.info(logger.coloring("EMA validate start..."))
2020-06-08 18:22:32 +08:00
with ema.apply(exe):
2020-06-30 16:00:51 +08:00
top1_acc = program.run(
valid_dataloader, exe, compiled_valid_prog,
valid_fetchs, epoch_id, 'valid', config)
2020-05-06 18:24:52 +08:00
logger.info(logger.coloring("EMA validate over!"))
2020-04-27 19:02:11 +08:00
top1_acc = program.run(valid_dataloader, exe,
compiled_valid_prog, valid_fetchs,
2020-06-30 16:00:51 +08:00
epoch_id, 'valid', config)
2020-05-06 16:35:11 +08:00
if top1_acc > best_top1_acc:
best_top1_acc = top1_acc
2020-05-29 17:06:35 +08:00
message = "The best top1 acc {:.5f}, in epoch: {:d}".format(
best_top1_acc, epoch_id)
2020-05-06 16:35:11 +08:00
logger.info("{:s}".format(logger.coloring(message, "RED")))
2020-05-29 17:06:35 +08:00
if epoch_id % config.save_interval == 0:
2020-05-06 16:35:11 +08:00
model_path = os.path.join(config.model_save_dir,
2020-05-29 17:06:35 +08:00
config.ARCHITECTURE["name"])
2020-06-26 01:00:40 +08:00
save_model(train_prog, model_path, "best_model")
2020-04-27 19:02:11 +08:00
# 3. save the persistable model
if epoch_id % config.save_interval == 0:
2020-04-27 10:30:09 +08:00
model_path = os.path.join(config.model_save_dir,
config.ARCHITECTURE["name"])
2020-04-27 19:02:11 +08:00
save_model(train_prog, model_path, epoch_id)
2020-04-09 02:16:30 +08:00
if __name__ == '__main__':
paddle.enable_static()
2020-04-09 02:16:30 +08:00
args = parse_args()
main(args)