254 lines
8.3 KiB
Python
254 lines
8.3 KiB
Python
|
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
||
|
#
|
||
|
#Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
#you may not use this file except in compliance with the License.
|
||
|
#You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
#Unless required by applicable law or agreed to in writing, software
|
||
|
#distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
#See the License for the specific language governing permissions and
|
||
|
#limitations under the License.
|
||
|
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import math
|
||
|
|
||
|
import paddle
|
||
|
import paddle.fluid as fluid
|
||
|
from paddle.fluid.param_attr import ParamAttr
|
||
|
|
||
|
__all__ = [
|
||
|
"SE_ResNeXt", "SE_ResNeXt50_32x4d", "SE_ResNeXt101_32x4d",
|
||
|
"SE_ResNeXt152_32x4d"
|
||
|
]
|
||
|
|
||
|
|
||
|
class SE_ResNeXt():
|
||
|
def __init__(self, layers=50):
|
||
|
self.layers = layers
|
||
|
|
||
|
def net(self, input, class_dim=1000):
|
||
|
layers = self.layers
|
||
|
supported_layers = [50, 101, 152]
|
||
|
assert layers in supported_layers, \
|
||
|
"supported layers are {} but input layer is {}".format(supported_layers, layers)
|
||
|
if layers == 50:
|
||
|
cardinality = 32
|
||
|
reduction_ratio = 16
|
||
|
depth = [3, 4, 6, 3]
|
||
|
num_filters = [128, 256, 512, 1024]
|
||
|
|
||
|
conv = self.conv_bn_layer(
|
||
|
input=input,
|
||
|
num_filters=64,
|
||
|
filter_size=7,
|
||
|
stride=2,
|
||
|
act='relu',
|
||
|
name='conv1', )
|
||
|
conv = fluid.layers.pool2d(
|
||
|
input=conv,
|
||
|
pool_size=3,
|
||
|
pool_stride=2,
|
||
|
pool_padding=1,
|
||
|
pool_type='max',
|
||
|
use_cudnn=False)
|
||
|
elif layers == 101:
|
||
|
cardinality = 32
|
||
|
reduction_ratio = 16
|
||
|
depth = [3, 4, 23, 3]
|
||
|
num_filters = [128, 256, 512, 1024]
|
||
|
|
||
|
conv = self.conv_bn_layer(
|
||
|
input=input,
|
||
|
num_filters=64,
|
||
|
filter_size=7,
|
||
|
stride=2,
|
||
|
act='relu',
|
||
|
name="conv1", )
|
||
|
conv = fluid.layers.pool2d(
|
||
|
input=conv,
|
||
|
pool_size=3,
|
||
|
pool_stride=2,
|
||
|
pool_padding=1,
|
||
|
pool_type='max',
|
||
|
use_cudnn=False)
|
||
|
elif layers == 152:
|
||
|
cardinality = 64
|
||
|
reduction_ratio = 16
|
||
|
depth = [3, 8, 36, 3]
|
||
|
num_filters = [128, 256, 512, 1024]
|
||
|
|
||
|
conv = self.conv_bn_layer(
|
||
|
input=input,
|
||
|
num_filters=64,
|
||
|
filter_size=3,
|
||
|
stride=2,
|
||
|
act='relu',
|
||
|
name='conv1')
|
||
|
conv = self.conv_bn_layer(
|
||
|
input=conv,
|
||
|
num_filters=64,
|
||
|
filter_size=3,
|
||
|
stride=1,
|
||
|
act='relu',
|
||
|
name='conv2')
|
||
|
conv = self.conv_bn_layer(
|
||
|
input=conv,
|
||
|
num_filters=128,
|
||
|
filter_size=3,
|
||
|
stride=1,
|
||
|
act='relu',
|
||
|
name='conv3')
|
||
|
conv = fluid.layers.pool2d(
|
||
|
input=conv, pool_size=3, pool_stride=2, pool_padding=1, \
|
||
|
pool_type='max', use_cudnn=False)
|
||
|
n = 1 if layers == 50 or layers == 101 else 3
|
||
|
for block in range(len(depth)):
|
||
|
n += 1
|
||
|
for i in range(depth[block]):
|
||
|
conv = self.bottleneck_block(
|
||
|
input=conv,
|
||
|
num_filters=num_filters[block],
|
||
|
stride=2 if i == 0 and block != 0 else 1,
|
||
|
cardinality=cardinality,
|
||
|
reduction_ratio=reduction_ratio,
|
||
|
name=str(n) + '_' + str(i + 1))
|
||
|
|
||
|
pool = fluid.layers.pool2d(
|
||
|
input=conv, pool_type='avg', global_pooling=True, use_cudnn=False)
|
||
|
drop = fluid.layers.dropout(x=pool, dropout_prob=0.5)
|
||
|
stdv = 1.0 / math.sqrt(drop.shape[1] * 1.0)
|
||
|
out = fluid.layers.fc(
|
||
|
input=drop,
|
||
|
size=class_dim,
|
||
|
param_attr=ParamAttr(
|
||
|
initializer=fluid.initializer.Uniform(-stdv, stdv),
|
||
|
name='fc6_weights'),
|
||
|
bias_attr=ParamAttr(name='fc6_offset'))
|
||
|
return out
|
||
|
|
||
|
def shortcut(self, input, ch_out, stride, name):
|
||
|
ch_in = input.shape[1]
|
||
|
if ch_in != ch_out or stride != 1:
|
||
|
filter_size = 1
|
||
|
return self.conv_bn_layer(
|
||
|
input,
|
||
|
ch_out,
|
||
|
filter_size,
|
||
|
stride,
|
||
|
name='conv' + name + '_prj')
|
||
|
else:
|
||
|
return input
|
||
|
|
||
|
def bottleneck_block(self,
|
||
|
input,
|
||
|
num_filters,
|
||
|
stride,
|
||
|
cardinality,
|
||
|
reduction_ratio,
|
||
|
name=None):
|
||
|
conv0 = self.conv_bn_layer(
|
||
|
input=input,
|
||
|
num_filters=num_filters,
|
||
|
filter_size=1,
|
||
|
act='relu',
|
||
|
name='conv' + name + '_x1')
|
||
|
conv1 = self.conv_bn_layer(
|
||
|
input=conv0,
|
||
|
num_filters=num_filters,
|
||
|
filter_size=3,
|
||
|
stride=stride,
|
||
|
groups=cardinality,
|
||
|
act='relu',
|
||
|
name='conv' + name + '_x2')
|
||
|
conv2 = self.conv_bn_layer(
|
||
|
input=conv1,
|
||
|
num_filters=num_filters * 2,
|
||
|
filter_size=1,
|
||
|
act=None,
|
||
|
name='conv' + name + '_x3')
|
||
|
scale = self.squeeze_excitation(
|
||
|
input=conv2,
|
||
|
num_channels=num_filters * 2,
|
||
|
reduction_ratio=reduction_ratio,
|
||
|
name='fc' + name)
|
||
|
|
||
|
short = self.shortcut(input, num_filters * 2, stride, name=name)
|
||
|
|
||
|
return fluid.layers.elementwise_add(x=short, y=scale, act='relu')
|
||
|
|
||
|
def conv_bn_layer(self,
|
||
|
input,
|
||
|
num_filters,
|
||
|
filter_size,
|
||
|
stride=1,
|
||
|
groups=1,
|
||
|
act=None,
|
||
|
name=None):
|
||
|
conv = fluid.layers.conv2d(
|
||
|
input=input,
|
||
|
num_filters=num_filters,
|
||
|
filter_size=filter_size,
|
||
|
stride=stride,
|
||
|
padding=(filter_size - 1) // 2,
|
||
|
groups=groups,
|
||
|
act=None,
|
||
|
bias_attr=False,
|
||
|
param_attr=ParamAttr(name=name + '_weights'), )
|
||
|
bn_name = name + "_bn"
|
||
|
return fluid.layers.batch_norm(
|
||
|
input=conv,
|
||
|
act=act,
|
||
|
param_attr=ParamAttr(name=bn_name + '_scale'),
|
||
|
bias_attr=ParamAttr(bn_name + '_offset'),
|
||
|
moving_mean_name=bn_name + '_mean',
|
||
|
moving_variance_name=bn_name + '_variance')
|
||
|
|
||
|
def squeeze_excitation(self,
|
||
|
input,
|
||
|
num_channels,
|
||
|
reduction_ratio,
|
||
|
name=None):
|
||
|
pool = fluid.layers.pool2d(
|
||
|
input=input, pool_type='avg', global_pooling=True, use_cudnn=False)
|
||
|
stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
|
||
|
squeeze = fluid.layers.fc(
|
||
|
input=pool,
|
||
|
size=num_channels // reduction_ratio,
|
||
|
act='relu',
|
||
|
param_attr=fluid.param_attr.ParamAttr(
|
||
|
initializer=fluid.initializer.Uniform(-stdv, stdv),
|
||
|
name=name + '_sqz_weights'),
|
||
|
bias_attr=ParamAttr(name=name + '_sqz_offset'))
|
||
|
stdv = 1.0 / math.sqrt(squeeze.shape[1] * 1.0)
|
||
|
excitation = fluid.layers.fc(
|
||
|
input=squeeze,
|
||
|
size=num_channels,
|
||
|
act='sigmoid',
|
||
|
param_attr=fluid.param_attr.ParamAttr(
|
||
|
initializer=fluid.initializer.Uniform(-stdv, stdv),
|
||
|
name=name + '_exc_weights'),
|
||
|
bias_attr=ParamAttr(name=name + '_exc_offset'))
|
||
|
scale = fluid.layers.elementwise_mul(x=input, y=excitation, axis=0)
|
||
|
return scale
|
||
|
|
||
|
|
||
|
def SE_ResNeXt50_32x4d():
|
||
|
model = SE_ResNeXt(layers=50)
|
||
|
return model
|
||
|
|
||
|
|
||
|
def SE_ResNeXt101_32x4d():
|
||
|
model = SE_ResNeXt(layers=101)
|
||
|
return model
|
||
|
|
||
|
|
||
|
def SE_ResNeXt152_32x4d():
|
||
|
model = SE_ResNeXt(layers=152)
|
||
|
return model
|