150 lines
9.0 KiB
Markdown
150 lines
9.0 KiB
Markdown
|
# PaddleClas Android Demo 使用文档
|
|||
|
|
|||
|
在 Android 上实现实时的PaddleClas图像分类功能,此 Demo 有很好的的易用性和开放性,如在 Demo 中跑自己训练好的模型等。
|
|||
|
|
|||
|
## 环境准备
|
|||
|
|
|||
|
1. 在本地环境安装好 Android Studio 工具,详细安装方法请见[Android Stuido 官网](https://developer.android.com/studio)。
|
|||
|
2. 准备一部 Android 手机,并开启 USB 调试模式。开启方法: `手机设置 -> 查找开发者选项 -> 打开开发者选项和 USB 调试模式`
|
|||
|
|
|||
|
## 部署步骤
|
|||
|
|
|||
|
1. 用 Android Studio 打开 paddleclas/android 工程
|
|||
|
2. 手机连接电脑,打开 USB 调试和文件传输模式,并在 Android Studio 上连接自己的手机设备(手机需要开启允许从 USB 安装软件权限)
|
|||
|
|
|||
|
<p align="center">
|
|||
|
<img width="1280" alt="image" src="https://user-images.githubusercontent.com/31974251/197338597-2c9e1cf0-569b-49b9-a7fb-cdec71921af8.png">
|
|||
|
</p>
|
|||
|
|
|||
|
> **注意:**
|
|||
|
>> 如果您在导入项目、编译或者运行过程中遇到 NDK 配置错误的提示,请打开 ` File > Project Structure > SDK Location`,修改 `Andriod SDK location` 为您本机配置的 SDK 所在路径。
|
|||
|
|
|||
|
4. 点击 Run 按钮,自动编译 APP 并安装到手机。(该过程会自动下载预编译的 FastDeploy Android 库,需要联网)
|
|||
|
成功后效果如下,图一:APP 安装到手机;图二: APP 打开后的效果,会自动识别图片中的物体并标记;图三:APP设置选项,点击右上角的设置图片,可以设置不同选项进行体验。
|
|||
|
|
|||
|
| APP 图标 | APP 效果 | APP设置项
|
|||
|
| --- | --- | --- |
|
|||
|
|  |  |  |
|
|||
|
|
|||
|
## PaddleClasModel Java API 说明
|
|||
|
- 模型初始化 API: 模型初始化API包含两种方式,方式一是通过构造函数直接初始化;方式二是,通过调用init函数,在合适的程序节点进行初始化。PaddleClasModel初始化参数说明如下:
|
|||
|
- modelFile: String, paddle格式的模型文件路径,如 model.pdmodel
|
|||
|
- paramFile: String, paddle格式的参数文件路径,如 model.pdiparams
|
|||
|
- configFile: String, 模型推理的预处理配置文件,如 infer_cfg.yml
|
|||
|
- labelFile: String, 可选参数,表示label标签文件所在路径,用于可视化,如 imagenet1k_label_list.txt,每一行包含一个label
|
|||
|
- option: RuntimeOption,可选参数,模型初始化option。如果不传入该参数则会使用默认的运行时选项。
|
|||
|
|
|||
|
```java
|
|||
|
// 构造函数: constructor w/o label file
|
|||
|
public PaddleClasModel(); // 空构造函数,之后可以调用init初始化
|
|||
|
public PaddleClasModel(String modelFile, String paramsFile, String configFile);
|
|||
|
public PaddleClasModel(String modelFile, String paramsFile, String configFile, String labelFile);
|
|||
|
public PaddleClasModel(String modelFile, String paramsFile, String configFile, RuntimeOption option);
|
|||
|
public PaddleClasModel(String modelFile, String paramsFile, String configFile, String labelFile, RuntimeOption option);
|
|||
|
// 手动调用init初始化: call init manually w/o label file
|
|||
|
public boolean init(String modelFile, String paramsFile, String configFile, RuntimeOption option);
|
|||
|
public boolean init(String modelFile, String paramsFile, String configFile, String labelFile, RuntimeOption option);
|
|||
|
```
|
|||
|
- 模型预测 API:模型预测API包含直接预测的API以及带可视化功能的API。直接预测是指,不保存图片以及不渲染结果到Bitmap上,仅预测推理结果。预测并且可视化是指,预测结果以及可视化,并将可视化后的图片保存到指定的途径,以及将可视化结果渲染在Bitmap(目前支持ARGB8888格式的Bitmap), 后续可将该Bitmap在camera中进行显示。
|
|||
|
```java
|
|||
|
// 直接预测:不保存图片以及不渲染结果到Bitmap上
|
|||
|
public ClassifyResult predict(Bitmap ARGB8888Bitmap);
|
|||
|
// 预测并且可视化:预测结果以及可视化,并将可视化后的图片保存到指定的途径,以及将可视化结果渲染在Bitmap上
|
|||
|
public ClassifyResult predict(Bitmap ARGB8888Bitmap, String savedImagePath, float scoreThreshold)
|
|||
|
```
|
|||
|
- 模型资源释放 API:调用 release() API 可以释放模型资源,返回true表示释放成功,false表示失败;调用 initialized() 可以判断模型是否初始化成功,true表示初始化成功,false表示失败。
|
|||
|
```java
|
|||
|
public boolean release(); // 释放native资源
|
|||
|
public boolean initialized(); // 检查是否初始化成功
|
|||
|
```
|
|||
|
- RuntimeOption设置说明
|
|||
|
```java
|
|||
|
public void enableLiteFp16(); // 开启fp16精度推理
|
|||
|
public void disableLiteFP16(); // 关闭fp16精度推理
|
|||
|
public void setCpuThreadNum(int threadNum); // 设置线程数
|
|||
|
public void setLitePowerMode(LitePowerMode mode); // 设置能耗模式
|
|||
|
public void setLitePowerMode(String modeStr); // 通过字符串形式设置能耗模式
|
|||
|
public void enableRecordTimeOfRuntime(); // 是否打印模型运行耗时
|
|||
|
```
|
|||
|
|
|||
|
- 模型结果ClassifyResult说明
|
|||
|
```java
|
|||
|
public float[] mScores; // [n] 得分
|
|||
|
public int[] mLabelIds; // [n] 分类ID
|
|||
|
public boolean initialized(); // 检测结果是否有效
|
|||
|
```
|
|||
|
|
|||
|
- 模型调用示例1:使用构造函数以及默认的RuntimeOption
|
|||
|
```java
|
|||
|
import java.nio.ByteBuffer;
|
|||
|
import android.graphics.Bitmap;
|
|||
|
import android.opengl.GLES20;
|
|||
|
|
|||
|
import com.baidu.paddle.fastdeploy.vision.ClassifyResult;
|
|||
|
import com.baidu.paddle.fastdeploy.vision.classification.PaddleClasModel;
|
|||
|
|
|||
|
// 初始化模型
|
|||
|
PaddleClasModel model = new PaddleClasModel("MobileNetV1_x0_25_infer/inference.pdmodel",
|
|||
|
"MobileNetV1_x0_25_infer/inference.pdiparams",
|
|||
|
"MobileNetV1_x0_25_infer/inference_cls.yml");
|
|||
|
|
|||
|
// 读取图片: 以下仅为读取Bitmap的伪代码
|
|||
|
ByteBuffer pixelBuffer = ByteBuffer.allocate(width * height * 4);
|
|||
|
GLES20.glReadPixels(0, 0, width, height, GLES20.GL_RGBA, GLES20.GL_UNSIGNED_BYTE, pixelBuffer);
|
|||
|
Bitmap ARGB8888ImageBitmap = Bitmap.createBitmap(width, height, Bitmap.Config.ARGB_8888);
|
|||
|
ARGB8888ImageBitmap.copyPixelsFromBuffer(pixelBuffer);
|
|||
|
|
|||
|
// 模型推理
|
|||
|
ClassifyResult result = model.predict(ARGB8888ImageBitmap);
|
|||
|
|
|||
|
// 释放模型资源
|
|||
|
model.release();
|
|||
|
```
|
|||
|
|
|||
|
- 模型调用示例2: 在合适的程序节点,手动调用init,并自定义RuntimeOption
|
|||
|
```java
|
|||
|
// import 同上 ...
|
|||
|
import com.baidu.paddle.fastdeploy.RuntimeOption;
|
|||
|
import com.baidu.paddle.fastdeploy.LitePowerMode;
|
|||
|
import com.baidu.paddle.fastdeploy.vision.ClassifyResult;
|
|||
|
import com.baidu.paddle.fastdeploy.vision.classification.PaddleClasModel;
|
|||
|
// 新建空模型
|
|||
|
PaddleClasModel model = new PaddleClasModel();
|
|||
|
// 模型路径
|
|||
|
String modelFile = "MobileNetV1_x0_25_infer/inference.pdmodel";
|
|||
|
String paramFile = "MobileNetV1_x0_25_infer/inference.pdiparams";
|
|||
|
String configFile = "MobileNetV1_x0_25_infer/inference_cls.yml";
|
|||
|
// 指定RuntimeOption
|
|||
|
RuntimeOption option = new RuntimeOption();
|
|||
|
option.setCpuThreadNum(2);
|
|||
|
option.setLitePowerMode(LitePowerMode.LITE_POWER_HIGH);
|
|||
|
option.enableRecordTimeOfRuntime();
|
|||
|
option.enableLiteFp16();
|
|||
|
// 使用init函数初始化
|
|||
|
model.init(modelFile, paramFile, configFile, option);
|
|||
|
// Bitmap读取、模型预测、资源释放 同上 ...
|
|||
|
```
|
|||
|
更详细的用法请参考 [MainActivity](./app/src/main/java/com/baidu/paddle/fastdeploy/app/examples/classification/ClassificationMainActivity.java) 中的用法
|
|||
|
|
|||
|
## 替换 FastDeploy 预测库和模型
|
|||
|
替换FastDeploy预测库和模型的步骤非常简单。预测库所在的位置为 `app/libs/fastdeploy-android-xxx-shared`,其中 `xxx` 表示当前您使用的预测库版本号。模型所在的位置为,`app/src/main/assets/models/MobileNetV1_x0_25_infer`。
|
|||
|
- 替换FastDeploy预测库的步骤:
|
|||
|
- 下载或编译最新的FastDeploy Android预测库,解压缩后放在 `app/libs` 目录下;
|
|||
|
- 修改 `app/src/main/cpp/CMakeLists.txt` 中的预测库路径,指向您下载或编译的预测库路径。如:
|
|||
|
```cmake
|
|||
|
set(FastDeploy_DIR "${CMAKE_CURRENT_SOURCE_DIR}/../../../libs/fastdeploy-android-xxx-shared")
|
|||
|
```
|
|||
|
- 替换PaddleClas模型的步骤:
|
|||
|
- 将您的PaddleClas分类模型放在 `app/src/main/assets/models` 目录下;
|
|||
|
- 修改 `app/src/main/res/values/strings.xml` 中模型路径的默认值,如:
|
|||
|
```xml
|
|||
|
<!-- 将这个路径指修改成您的模型,如 models/MobileNetV2_x0_25_infer -->
|
|||
|
<string name="CLASSIFICATION_MODEL_DIR_DEFAULT">models/MobileNetV1_x0_25_infer</string>
|
|||
|
<string name="CLASSIFICATION_LABEL_PATH_DEFAULT">labels/imagenet1k_label_list.txt</string>
|
|||
|
```
|
|||
|
|
|||
|
## 更多参考文档
|
|||
|
如果您想知道更多的FastDeploy Java API文档以及如何通过JNI来接入FastDeploy C++ API感兴趣,可以参考以下内容:
|
|||
|
- [在 Android 中使用 FastDeploy Java SDK](https://github.com/PaddlePaddle/FastDeploy/tree/develop/java/android)
|
|||
|
- [在 Android 中使用 FastDeploy C++ SDK](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/faq/use_cpp_sdk_on_android.md)
|