PaddleClas/tools/search_strategy.py

79 lines
3.1 KiB
Python
Raw Normal View History

2022-05-14 21:37:31 +08:00
import subprocess
from ppcls.utils import config
def get_result(log_dir):
log_file = "{}/train.log".format(log_dir)
with open(log_file, "r") as f:
raw = f.read()
res = float(raw.split("best metric ")[-1].split("]")[0])
return res
def search_train(search_list, base_program, base_output_dir, search_key, config_replace_value):
best_res = 0.
best = search_list[0]
all_result = {}
for search_i in search_list:
program = base_program.copy()
for v in config_replace_value:
program += ["-o", "{}={}".format(v, search_i)]
output_dir = "{}/{}_{}".format(base_output_dir, search_key, search_i.replace(".", "_"))
program += ["-o", "Global.output_dir={}".format(output_dir)]
subprocess.Popen(program)
res = get_result(output_dir)
all_result[search_i] = res
if res > best_res:
best = search_i
best_res = res
all_result["best"] = best
return all_result
def search_strategy():
args = config.parse_args()
configs = config.get_config(args.config, overrides=args.override, show=False)
base_config_file = configs["base_config_file"]
gpus = configs["gpus"]
base_program = ["python3.7", "-m", "paddle.distributed.launch", "--gpus={}".format(gpus),
"tools/train.py", "-c", base_config_file]
base_output_dir = configs["output_dir"]
search_dict = configs.get("search_dict")
all_results = {}
for search_key in search_dict:
search_values = configs[search_key]["search_values"]
replace_config = search_dict[search_key]["replace_config"]
res = search_train(search_values, base_program, base_output_dir, search_key, replace_config)
all_results[search_key] = res
best = res.get("best")
for v in replace_config:
base_program += ["-o", "{}={}".format(v, best)]
teacher_configs = configs.get("teacher", None)
if teacher_configs is not None:
teacher_program = base_program.copy()
# remove incompatible keys
teacher_rm_keys = teacher_configs["rm_keys"]
rm_indices = []
for rm_k in teacher_rm_keys:
rm_indices.append(base_program.index(rm_k))
rm_indices = sorted(rm_indices)
for rm_index in rm_indices[:, :, -1]:
teacher_program.pop(rm_index + 1)
teacher_program.pop(rm_index)
replace_config = "-o Arch.name"
teacher_list = teacher_configs["search_values"]
res = search_train(teacher_list, teacher_program, base_output_dir, "teacher", replace_config)
all_results["teacher"] = res
best = res.get("best")
t_pretrained = "{}/{}_{}".format(base_output_dir, "teacher", best.replace(".", "_"))
base_program += ["-o", "Arch.models.0.Teacher.name={}".format(best),
"-o", "Arch.models.0.Teacher.pretrained={}".format(t_pretrained)]
output_dir = "{}/search_res".format(base_output_dir)
base_program += ["-o", "Global.output_dir={}".format(output_dir)]
subprocess.Popen(base_program)
if __name__ == '__main__':
search_strategy()