PaddleClas/ppcls/arch/backbone/legendary_models/inception_v3.py

495 lines
20 KiB
Python
Raw Normal View History

2021-05-28 16:20:06 +08:00
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
2021-05-28 16:20:06 +08:00
from __future__ import absolute_import, division, print_function
import paddle
from paddle import ParamAttr
import paddle.nn as nn
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
from paddle.nn.initializer import Uniform
import math
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
2021-05-28 16:20:06 +08:00
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
2021-05-28 16:20:06 +08:00
MODEL_URLS = {
"InceptionV3": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/InceptionV3_pretrained.pdparams",
}
__all__ = MODEL_URLS.keys()
2021-05-28 16:20:06 +08:00
'''
InceptionV3 config: dict.
key: inception blocks of InceptionV3.
values: conv num in different blocks.
'''
NET_CONFIG = {
2021-05-27 14:42:45 +08:00
'inception_a':[[192, 256, 288], [32, 64, 64]],
'inception_b':[288],
'inception_c':[[768, 768, 768, 768], [128, 160, 160, 192]],
'inception_d':[768],
'inception_e':[1280,2048]
}
class ConvBNLayer(TheseusLayer):
def __init__(self,
num_channels,
num_filters,
filter_size,
stride=1,
padding=0,
groups=1,
act="relu"):
super(ConvBNLayer, self).__init__()
2021-05-28 16:20:06 +08:00
self.act = act
self.conv = Conv2D(
in_channels=num_channels,
out_channels=num_filters,
kernel_size=filter_size,
stride=stride,
padding=padding,
groups=groups,
bias_attr=False)
self.batch_norm = BatchNorm(
2021-05-28 16:20:06 +08:00
num_filters)
self.relu = nn.ReLU()
2021-05-28 16:20:06 +08:00
def forward(self, x):
x = self.conv(x)
x = self.batch_norm(x)
if self.act:
x = self.relu(x)
return x
class InceptionStem(TheseusLayer):
def __init__(self):
super(InceptionStem, self).__init__()
self.conv_1a_3x3 = ConvBNLayer(num_channels=3,
num_filters=32,
filter_size=3,
stride=2,
act="relu")
self.conv_2a_3x3 = ConvBNLayer(num_channels=32,
num_filters=32,
filter_size=3,
stride=1,
act="relu")
self.conv_2b_3x3 = ConvBNLayer(num_channels=32,
num_filters=64,
filter_size=3,
padding=1,
act="relu")
self.maxpool = MaxPool2D(kernel_size=3, stride=2, padding=0)
self.conv_3b_1x1 = ConvBNLayer(num_channels=64,
num_filters=80,
filter_size=1,
act="relu")
self.conv_4a_3x3 = ConvBNLayer(num_channels=80,
num_filters=192,
filter_size=3,
act="relu")
def forward(self, x):
2021-05-28 16:20:06 +08:00
x = self.conv_1a_3x3(x)
x = self.conv_2a_3x3(x)
x = self.conv_2b_3x3(x)
x = self.maxpool(x)
x = self.conv_3b_1x1(x)
x = self.conv_4a_3x3(x)
x = self.maxpool(x)
return x
class InceptionA(TheseusLayer):
def __init__(self, num_channels, pool_features):
super(InceptionA, self).__init__()
self.branch1x1 = ConvBNLayer(num_channels=num_channels,
num_filters=64,
filter_size=1,
act="relu")
self.branch5x5_1 = ConvBNLayer(num_channels=num_channels,
num_filters=48,
filter_size=1,
act="relu")
self.branch5x5_2 = ConvBNLayer(num_channels=48,
num_filters=64,
filter_size=5,
padding=2,
act="relu")
self.branch3x3dbl_1 = ConvBNLayer(num_channels=num_channels,
num_filters=64,
filter_size=1,
act="relu")
self.branch3x3dbl_2 = ConvBNLayer(num_channels=64,
num_filters=96,
filter_size=3,
padding=1,
act="relu")
self.branch3x3dbl_3 = ConvBNLayer(num_channels=96,
num_filters=96,
filter_size=3,
padding=1,
act="relu")
self.branch_pool = AvgPool2D(kernel_size=3, stride=1, padding=1, exclusive=False)
self.branch_pool_conv = ConvBNLayer(num_channels=num_channels,
num_filters=pool_features,
filter_size=1,
act="relu")
def forward(self, x):
branch1x1 = self.branch1x1(x)
branch5x5 = self.branch5x5_1(x)
branch5x5 = self.branch5x5_2(branch5x5)
branch3x3dbl = self.branch3x3dbl_1(x)
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)
branch_pool = self.branch_pool(x)
branch_pool = self.branch_pool_conv(branch_pool)
2021-05-28 16:20:06 +08:00
x = paddle.concat([branch1x1, branch5x5, branch3x3dbl, branch_pool], axis=1)
return x
class InceptionB(TheseusLayer):
def __init__(self, num_channels):
super(InceptionB, self).__init__()
self.branch3x3 = ConvBNLayer(num_channels=num_channels,
num_filters=384,
filter_size=3,
stride=2,
act="relu")
self.branch3x3dbl_1 = ConvBNLayer(num_channels=num_channels,
num_filters=64,
filter_size=1,
act="relu")
self.branch3x3dbl_2 = ConvBNLayer(num_channels=64,
num_filters=96,
filter_size=3,
padding=1,
act="relu")
self.branch3x3dbl_3 = ConvBNLayer(num_channels=96,
num_filters=96,
filter_size=3,
stride=2,
act="relu")
self.branch_pool = MaxPool2D(kernel_size=3, stride=2)
def forward(self, x):
branch3x3 = self.branch3x3(x)
branch3x3dbl = self.branch3x3dbl_1(x)
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)
branch_pool = self.branch_pool(x)
2021-05-28 16:20:06 +08:00
x = paddle.concat([branch3x3, branch3x3dbl, branch_pool], axis=1)
2021-05-28 16:20:06 +08:00
return x
class InceptionC(TheseusLayer):
def __init__(self, num_channels, channels_7x7):
super(InceptionC, self).__init__()
self.branch1x1 = ConvBNLayer(num_channels=num_channels,
num_filters=192,
filter_size=1,
act="relu")
2021-05-27 14:42:45 +08:00
self.branch7x7_1 = ConvBNLayer(num_channels=num_channels,
num_filters=channels_7x7,
filter_size=1,
stride=1,
act="relu")
self.branch7x7_2 = ConvBNLayer(num_channels=channels_7x7,
num_filters=channels_7x7,
filter_size=(1, 7),
stride=1,
padding=(0, 3),
act="relu")
self.branch7x7_3 = ConvBNLayer(num_channels=channels_7x7,
num_filters=192,
filter_size=(7, 1),
stride=1,
padding=(3, 0),
act="relu")
self.branch7x7dbl_1 = ConvBNLayer(num_channels=num_channels,
num_filters=channels_7x7,
filter_size=1,
act="relu")
self.branch7x7dbl_2 = ConvBNLayer(num_channels=channels_7x7,
num_filters=channels_7x7,
filter_size=(7, 1),
padding = (3, 0),
act="relu")
self.branch7x7dbl_3 = ConvBNLayer(num_channels=channels_7x7,
num_filters=channels_7x7,
filter_size=(1, 7),
padding = (0, 3),
act="relu")
self.branch7x7dbl_4 = ConvBNLayer(num_channels=channels_7x7,
num_filters=channels_7x7,
filter_size=(7, 1),
padding = (3, 0),
act="relu")
self.branch7x7dbl_5 = ConvBNLayer(num_channels=channels_7x7,
num_filters=192,
filter_size=(1, 7),
padding = (0, 3),
act="relu")
self.branch_pool = AvgPool2D(kernel_size=3, stride=1, padding=1, exclusive=False)
self.branch_pool_conv = ConvBNLayer(num_channels=num_channels,
num_filters=192,
filter_size=1,
act="relu")
def forward(self, x):
branch1x1 = self.branch1x1(x)
branch7x7 = self.branch7x7_1(x)
branch7x7 = self.branch7x7_2(branch7x7)
branch7x7 = self.branch7x7_3(branch7x7)
branch7x7dbl = self.branch7x7dbl_1(x)
branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl)
branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl)
branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl)
branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl)
branch_pool = self.branch_pool(x)
branch_pool = self.branch_pool_conv(branch_pool)
2021-05-28 16:20:06 +08:00
x = paddle.concat([branch1x1, branch7x7, branch7x7dbl, branch_pool], axis=1)
2021-05-28 16:20:06 +08:00
return x
class InceptionD(TheseusLayer):
def __init__(self, num_channels):
super(InceptionD, self).__init__()
self.branch3x3_1 = ConvBNLayer(num_channels=num_channels,
num_filters=192,
filter_size=1,
act="relu")
self.branch3x3_2 = ConvBNLayer(num_channels=192,
num_filters=320,
filter_size=3,
stride=2,
act="relu")
self.branch7x7x3_1 = ConvBNLayer(num_channels=num_channels,
num_filters=192,
filter_size=1,
act="relu")
self.branch7x7x3_2 = ConvBNLayer(num_channels=192,
num_filters=192,
filter_size=(1, 7),
padding=(0, 3),
act="relu")
self.branch7x7x3_3 = ConvBNLayer(num_channels=192,
num_filters=192,
filter_size=(7, 1),
padding=(3, 0),
act="relu")
self.branch7x7x3_4 = ConvBNLayer(num_channels=192,
num_filters=192,
filter_size=3,
stride=2,
act="relu")
self.branch_pool = MaxPool2D(kernel_size=3, stride=2)
def forward(self, x):
branch3x3 = self.branch3x3_1(x)
branch3x3 = self.branch3x3_2(branch3x3)
branch7x7x3 = self.branch7x7x3_1(x)
branch7x7x3 = self.branch7x7x3_2(branch7x7x3)
branch7x7x3 = self.branch7x7x3_3(branch7x7x3)
branch7x7x3 = self.branch7x7x3_4(branch7x7x3)
branch_pool = self.branch_pool(x)
2021-05-28 16:20:06 +08:00
x = paddle.concat([branch3x3, branch7x7x3, branch_pool], axis=1)
return x
class InceptionE(TheseusLayer):
def __init__(self, num_channels):
super(InceptionE, self).__init__()
self.branch1x1 = ConvBNLayer(num_channels=num_channels,
num_filters=320,
filter_size=1,
act="relu")
self.branch3x3_1 = ConvBNLayer(num_channels=num_channels,
num_filters=384,
filter_size=1,
act="relu")
self.branch3x3_2a = ConvBNLayer(num_channels=384,
num_filters=384,
filter_size=(1, 3),
padding=(0, 1),
act="relu")
self.branch3x3_2b = ConvBNLayer(num_channels=384,
num_filters=384,
filter_size=(3, 1),
padding=(1, 0),
act="relu")
self.branch3x3dbl_1 = ConvBNLayer(num_channels=num_channels,
num_filters=448,
filter_size=1,
act="relu")
self.branch3x3dbl_2 = ConvBNLayer(num_channels=448,
num_filters=384,
filter_size=3,
padding=1,
act="relu")
self.branch3x3dbl_3a = ConvBNLayer(num_channels=384,
num_filters=384,
filter_size=(1, 3),
padding=(0, 1),
act="relu")
self.branch3x3dbl_3b = ConvBNLayer(num_channels=384,
num_filters=384,
filter_size=(3, 1),
padding=(1, 0),
act="relu")
self.branch_pool = AvgPool2D(kernel_size=3, stride=1, padding=1, exclusive=False)
self.branch_pool_conv = ConvBNLayer(num_channels=num_channels,
num_filters=192,
filter_size=1,
act="relu")
def forward(self, x):
branch1x1 = self.branch1x1(x)
branch3x3 = self.branch3x3_1(x)
branch3x3 = [
self.branch3x3_2a(branch3x3),
self.branch3x3_2b(branch3x3),
]
branch3x3 = paddle.concat(branch3x3, axis=1)
branch3x3dbl = self.branch3x3dbl_1(x)
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
branch3x3dbl = [
self.branch3x3dbl_3a(branch3x3dbl),
self.branch3x3dbl_3b(branch3x3dbl),
]
branch3x3dbl = paddle.concat(branch3x3dbl, axis=1)
branch_pool = self.branch_pool(x)
branch_pool = self.branch_pool_conv(branch_pool)
2021-05-28 16:20:06 +08:00
x = paddle.concat([branch1x1, branch3x3, branch3x3dbl, branch_pool], axis=1)
return x
class Inception_V3(TheseusLayer):
2021-05-28 16:20:06 +08:00
"""
Inception_V3
Args:
config: dict. config of Inception_V3.
class_num: int=1000. The number of classes.
pretrained: (True or False) or path of pretrained_model. Whether to load the pretrained model.
Returns:
model: nn.Layer. Specific Inception_V3 model depends on args.
"""
2021-05-27 14:42:45 +08:00
def __init__(self,
config,
class_num=1000,
pretrained=False,
**kwargs):
super(Inception_V3, self).__init__()
self.inception_a_list = config['inception_a']
self.inception_c_list = config['inception_c']
self.inception_b_list = config['inception_b']
self.inception_d_list = config['inception_d']
self.inception_e_list = config ['inception_e']
2021-05-28 16:20:06 +08:00
self.pretrained = pretrained
self.inception_stem = InceptionStem()
self.inception_block_list = nn.LayerList()
for i in range(len(self.inception_a_list[0])):
inception_a = InceptionA(self.inception_a_list[0][i],
self.inception_a_list[1][i])
self.inception_block_list.append(inception_a)
for i in range(len(self.inception_b_list)):
inception_b = InceptionB(self.inception_b_list[i])
self.inception_block_list.append(inception_b)
for i in range(len(self.inception_c_list[0])):
inception_c = InceptionC(self.inception_c_list[0][i],
self.inception_c_list[1][i])
self.inception_block_list.append(inception_c)
for i in range(len(self.inception_d_list)):
inception_d = InceptionD(self.inception_d_list[i])
self.inception_block_list.append(inception_d)
for i in range(len(self.inception_e_list)):
inception_e = InceptionE(self.inception_e_list[i])
self.inception_block_list.append(inception_e)
2021-05-28 18:24:18 +08:00
self.avg_pool = AdaptiveAvgPool2D(1)
self.dropout = Dropout(p=0.2, mode="downscale_in_infer")
stdv = 1.0 / math.sqrt(2048 * 1.0)
2021-05-28 18:24:18 +08:00
self.fc = Linear(
2048,
class_num,
weight_attr=ParamAttr(
initializer=Uniform(-stdv, stdv)),
bias_attr=ParamAttr())
def forward(self, x):
2021-05-28 16:20:06 +08:00
x = self.inception_stem(x)
for inception_block in self.inception_block_list:
2021-05-28 16:20:06 +08:00
x = inception_block(x)
2021-05-28 18:24:18 +08:00
x = self.avg_pool(x)
2021-05-28 16:20:06 +08:00
x = paddle.reshape(x, shape=[-1, 2048])
2021-05-28 18:24:18 +08:00
x = self.dropout(x)
x = self.fc(x)
2021-05-28 16:20:06 +08:00
return x
2021-05-27 14:42:45 +08:00
def InceptionV3(**kwargs):
"""
InceptionV3
Args:
kwargs:
class_num: int=1000. Output dim of last fc layer.
2021-05-28 16:20:06 +08:00
pretrained: bool or str, default: bool=False. Whether to load the pretrained model.
2021-05-27 14:42:45 +08:00
Returns:
model: nn.Layer. Specific `InceptionV3` model
"""
model = Inception_V3(NET_CONFIG, **kwargs)
2021-05-28 16:20:06 +08:00
if isinstance(model.pretrained, bool):
if model.pretrained is True:
load_dygraph_pretrain_from_url(model, MODEL_URLS["InceptionV3"])
elif isinstance(model.pretrained, str):
load_dygraph_pretrain(model, model.pretrained)
else:
raise RuntimeError(
"pretrained type is not available. Please use `string` or `boolean` type")
2021-05-27 14:42:45 +08:00
return model