PaddleClas/ppcls/loss/deephashloss.py

141 lines
4.9 KiB
Python
Raw Normal View History

2021-08-25 14:00:21 +08:00
#copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import paddle
import paddle.nn as nn
2022-02-23 19:50:39 +08:00
2021-08-25 14:00:21 +08:00
class DSHSDLoss(nn.Layer):
"""
# DSHSD(IEEE ACCESS 2019)
# paper [Deep Supervised Hashing Based on Stable Distribution](https://ieeexplore.ieee.org/document/8648432/)
"""
2022-02-23 19:50:39 +08:00
2021-11-06 23:32:19 +08:00
def __init__(self, alpha, multi_label=False):
super(DSHSDLoss, self).__init__()
2021-08-25 14:00:21 +08:00
self.alpha = alpha
self.multi_label = multi_label
2021-11-06 23:32:19 +08:00
def forward(self, input, label):
2021-08-25 14:00:21 +08:00
feature = input["features"]
2021-11-06 23:32:19 +08:00
logits = input["logits"]
dist = paddle.sum(paddle.square(
(paddle.unsqueeze(feature, 1) - paddle.unsqueeze(feature, 0))),
axis=2)
2021-08-25 14:00:21 +08:00
# label to ont-hot
2021-11-06 23:14:40 +08:00
n_class = logits.shape[1]
2022-02-23 19:50:39 +08:00
label = paddle.nn.functional.one_hot(
label, n_class).astype("float32").squeeze()
2021-08-25 14:00:21 +08:00
2021-11-06 23:32:19 +08:00
s = (paddle.matmul(
label, label, transpose_y=True) == 0).astype("float32")
2021-11-06 23:14:40 +08:00
margin = 2 * feature.shape[1]
Ld = (1 - s) / 2 * dist + s / 2 * (margin - dist).clip(min=0)
2021-08-25 14:00:21 +08:00
Ld = Ld.mean()
2021-11-06 23:32:19 +08:00
2021-08-25 14:00:21 +08:00
if self.multi_label:
# multiple labels classification loss
2021-11-06 23:32:19 +08:00
Lc = (logits - label * logits + (
(1 + (-logits).exp()).log())).sum(axis=1).mean()
2021-08-25 14:00:21 +08:00
else:
# single labels classification loss
2021-11-06 23:32:19 +08:00
Lc = (-paddle.nn.functional.softmax(logits).log() * label).sum(
axis=1).mean()
2021-08-25 14:00:21 +08:00
return {"dshsdloss": Lc + Ld * self.alpha}
2021-08-25 13:59:54 +08:00
2021-11-06 23:32:19 +08:00
2021-08-25 14:06:54 +08:00
class LCDSHLoss(nn.Layer):
2021-08-25 14:04:50 +08:00
"""
# paper [Locality-Constrained Deep Supervised Hashing for Image Retrieval](https://www.ijcai.org/Proceedings/2017/0499.pdf)
"""
2022-02-23 19:50:39 +08:00
2021-08-25 14:04:50 +08:00
def __init__(self, n_class, _lambda):
super(LCDSHLoss, self).__init__()
self._lambda = _lambda
self.n_class = n_class
def forward(self, input, label):
feature = input["features"]
2022-02-23 19:50:39 +08:00
label = paddle.nn.functional.one_hot(
label, self.n_class).astype("float32").squeeze()
s = 2 * (paddle.matmul(
label, label, transpose_y=True) > 0).astype("float32") - 1
2021-08-25 14:04:50 +08:00
inner_product = paddle.matmul(feature, feature, transpose_y=True) * 0.5
inner_product = inner_product.clip(min=-50, max=50)
L1 = paddle.log(1 + paddle.exp(-s * inner_product)).mean()
b = feature.sign()
inner_product_ = paddle.matmul(b, b, transpose_y=True) * 0.5
sigmoid = paddle.nn.Sigmoid()
L2 = (sigmoid(inner_product) - sigmoid(inner_product_)).pow(2).mean()
return {"lcdshloss": L1 + self._lambda * L2}
2022-02-23 19:50:39 +08:00
class DCHLoss(paddle.nn.Layer):
"""
# paper [Deep Cauchy Hashing for Hamming Space Retrieval]
URL:(http://ise.thss.tsinghua.edu.cn/~mlong/doc/deep-cauchy-hashing-cvpr18.pdf)
"""
def __init__(self, gamma, _lambda, n_class):
super(DCHLoss, self).__init__()
self.gamma = gamma
self._lambda = _lambda
self.n_class = n_class
2022-02-28 16:02:51 +08:00
def distance(self, feature_i, feature_j):
assert feature_i.shape[1] == feature_j.shape[
1], "feature len of feature_i and feature_j is different, please check whether the featurs are right"
K = feature_i.shape[1]
inner_product = paddle.matmul(feature_i, feature_j, transpose_y=True)
2022-02-23 19:50:39 +08:00
2022-02-28 16:02:51 +08:00
len_i = feature_i.pow(2).sum(axis=1, keepdim=True).pow(0.5)
len_j = feature_j.pow(2).sum(axis=1, keepdim=True).pow(0.5)
2022-02-23 19:50:39 +08:00
norm = paddle.matmul(len_i, len_j, transpose_y=True)
cos = inner_product / norm.clip(min=0.0001)
return (1 - cos.clip(max=0.99)) * K / 2
def forward(self, input, label):
u = input["features"]
y = paddle.nn.functional.one_hot(
label, self.n_class).astype("float32").squeeze()
s = paddle.matmul(y, y, transpose_y=True).astype("float32")
if (1 - s).sum() != 0 and s.sum() != 0:
positive_w = s * s.numel() / s.sum()
negative_w = (1 - s) * s.numel() / (1 - s).sum()
w = positive_w + negative_w
else:
w = 1
2022-02-28 16:02:51 +08:00
d_hi_hj = self.distance(u, u)
2022-02-23 19:50:39 +08:00
cauchy_loss = w * (s * paddle.log(d_hi_hj / self.gamma) +
paddle.log(1 + self.gamma / d_hi_hj))
all_one = paddle.ones_like(u, dtype="float32")
2022-02-28 19:37:09 +08:00
quantization_loss = paddle.log(1 + self.distance(u.abs(), all_one) /
2022-02-23 19:50:39 +08:00
self.gamma)
loss = cauchy_loss.mean() + self._lambda * quantization_loss.mean()
return {"dchloss": loss}