2022-06-10 18:43:22 +08:00
# RegNet 系列
-----
## 目录
- [1. 模型介绍 ](#1 )
- [1.1 模型简介 ](#1.1 )
- [1.2 模型指标 ](#1.2 )
- [1.3 Benchmark ](#1.3 )
- [1.3.1 基于 V100 GPU 的预测速度 ](#1.3.1 )
- [1.3.2 基于 T4 GPU 的预测速度 ](#1.3.2 )
- [2. 模型快速体验 ](#2 )
- [3. 模型训练、评估和预测 ](#3 )
- [4. 模型推理部署 ](#4 )
- [4.1 推理模型准备 ](#4.1 )
- [4.2 基于 Python 预测引擎推理 ](#4.2 )
- [4.3 基于 C++ 预测引擎推理 ](#4.3 )
- [4.4 服务化部署 ](#4.4 )
- [4.5 端侧部署 ](#4.5 )
- [4.6 Paddle2ONNX 模型转换与预测 ](#4.6 )
< a name = '1' > < / a >
## 1. 模型介绍
< a name = '1.1' > < / a >
### 1.1 模型简介
RegNet 是由 facebook 于 2020 年提出,旨在深化设计空间理念的概念,在 AnyNetX 的基础上逐步改进,通过加入共享瓶颈 ratio、共享组宽度、调整网络深度与宽度等策略, 最终实现简化设计空间结构、提高设计空间的可解释性、改善设计空间的质量, 并保持设计空间的模型多样性的目的。最终设计出的模型在类似的条件下, 性能还要优于 EfficientNet, 并且在 GPU 上的速度提高了 5 倍。
< a name = '1.2' > < / a >
### 1.2 模型指标
| Models | Top1 | Top5 | Reference< br > top1 | Reference< br > top5 | FLOPs< br > (G) | Params< br > (M) |
|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
2022-12-19 20:10:44 +08:00
| RegNetX_200MF | 0.6804 | 0.8842| 0.6821 | -| 0.2 | 2.7 |
| RegNetX_400MF | 0.7225 | 0.9078| 0.7228 | -| 0.4 | 5.2 |
| RegNetX_600MF | 0.7366 | 0.9198| 0.7286 | -| 0.6 | 6.2 |
| RegNetX_800MF | 0.7512 | 0.9250| 0.7494 | -| 0.8 | 7.3 |
| RegNetX_1600MF | 0.7673 | 0.9329| 0.7671 | -| 1.6 | 9.2 |
| RegNetX_3200MF | 0.7809 | 0.9413| 0.7819 | -| 3.2 | 15.3 |
| RegNetX_4GF | 0.7850 | 0.9416| 0.7860 | -| 4.0 | 22.2 |
| RegNetX_6400MF | 0.7897 | 0.9461| 0.7915 | -| 6.5 | 26.2 |
| RegNetX_8GF | 0.7928 | 0.9464| 0.7938 | -| 8.0 | 39.7 |
| RegNetX_12GF | 0.7972 | 0.9501| 0.8000 | -| 12.1 | 46.2 |
| RegNetX_16GF | 0.8013 | 0.9505| 0.8012 | -| 16.0 | 54.4 |
| RegNetX_32GF | 0.8032 | 0.9526| 0.8052 | -| 32.33 | 130.67 |
2022-06-10 18:43:22 +08:00
### 1.3 Benchmark
< a name = '1.3.1' > < / a >
#### 1.3.1 基于 V100 GPU 的预测速度
2022-06-19 18:29:45 +08:00
| Models | Size | Latency(ms)< br > bs=1 | Latency(ms)< br > bs=4 | Latency(ms)< br > bs=8 |
| ---------------------- | --------------- | ---------------- | ----------------------- | --------------------- |
2023-01-10 11:01:44 +08:00
| RegNetX_200MF | 224 | 1.00 | 1.29 | 4.12 |
2022-06-19 18:29:45 +08:00
| RegNetX_4GF | 224 | 6.46 | 8.48 | 11.45 |
2023-01-10 11:01:44 +08:00
| RegNetX_32GF | 224 | 13.66 | 28.08 | 51.04 |
2022-06-19 18:29:45 +08:00
2023-01-10 23:54:03 +08:00
**备注:** 精度类型为 FP32, 推理过程使用 TensorRT-8.0.3.4。
2022-06-10 18:43:22 +08:00
< a name = '1.3.2' > < / a >
#### 1.3.2 基于 T4 GPU 的预测速度
2022-06-19 18:29:45 +08:00
| Models | Size | Latency(ms)< br > FP16< br > bs=1 | Latency(ms)< br > FP16< br > bs=4 | Latency(ms)< br > FP16< br > bs=8 | Latency(ms)< br > FP32< br > bs=1 | Latency(ms)< br > FP32< br > bs=4 | Latency(ms)< br > FP32< br > bs=8 |
|:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
| RegNetX_4GF | 224 | 6.69042 | 8.01664 | 11.60608 | 6.46478 | 11.19862 | 16.89089 |
2023-01-10 23:54:03 +08:00
**备注:** 推理过程使用 TensorRT-8.0.3.4。
2022-06-10 18:43:22 +08:00
< a name = "2" > < / a >
## 2. 模型快速体验
安装 paddlepaddle 和 paddleclas 即可快速对图片进行预测,体验方法可以参考[ResNet50 模型快速体验](./ResNet.md#2-模型快速体验)。
< a name = "3" > < / a >
## 3. 模型训练、评估和预测
此部分内容包括训练环境配置、ImageNet数据的准备、该模型在 ImageNet 上的训练、评估、预测等内容。在 `ppcls/configs/ImageNet/RegNet/` 中提供了该模型的训练配置,启动训练方法可以参考:[ResNet50 模型训练、评估和预测](./ResNet.md#3-模型训练评估和预测)。
< a name = "4" > < / a >
## 4. 模型推理部署
< a name = "4.1" > < / a >
### 4.1 推理模型准备
Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端, 提供高性能的推理能力。相比于直接基于预训练模型进行预测, Paddle Inference可使用 MKLDNN、CUDNN、TensorRT 进行预测加速, 从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍, 可以参考[Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)。
Inference 的获取可以参考 [ResNet50 推理模型准备 ](./ResNet.md#41-推理模型准备 ) 。
< a name = "4.2" > < / a >
### 4.2 基于 Python 预测引擎推理
PaddleClas 提供了基于 python 预测引擎推理的示例。您可以参考[ResNet50 基于 Python 预测引擎推理](./ResNet.md#42-基于-python-预测引擎推理) 。
< a name = "4.3" > < / a >
### 4.3 基于 C++ 预测引擎推理
2022-10-24 14:37:02 +08:00
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../../deployment/image_classification/cpp/linux.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../../deployment/image_classification/cpp/windows.md)完成相应的预测库编译和模型预测工作。
2022-06-10 18:43:22 +08:00
< a name = "4.4" > < / a >
### 4.4 服务化部署
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议, 提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)。
2022-10-24 14:37:02 +08:00
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../../deployment/image_classification/paddle_serving.md)来完成相应的部署工作。
2022-06-10 18:43:22 +08:00
< a name = "4.5" > < / a >
### 4.5 端侧部署
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)。
2022-10-24 14:37:02 +08:00
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../../deployment/image_classification/paddle_lite.md)来完成相应的部署工作。
2022-06-10 18:43:22 +08:00
< a name = "4.6" > < / a >
### 4.6 Paddle2ONNX 模型转换与预测
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署, 包括TensorRT/OpenVINO/MNN/TNN/NCNN, 以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)。
2022-10-24 14:37:02 +08:00
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](../../deployment/image_classification/paddle2onnx.md)来完成相应的部署工作。