PaddleClas/ppcls/modeling/architectures/distillation_models.py

59 lines
1.8 KiB
Python
Raw Normal View History

2020-04-17 13:01:19 +08:00
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from .resnet_vd import ResNet50_vd
from .mobilenet_v3 import MobileNetV3_large_x1_0
from .resnext101_wsl import ResNeXt101_32x16d_wsl
__all__ = [
'ResNet50_vd_distill_MobileNetV3_x1_0',
'ResNeXt101_32x16d_wsl_distill_ResNet50_vd'
]
class ResNet50_vd_distill_MobileNetV3_x1_0():
def net(self, input, class_dim=1000):
# student
student = MobileNetV3_large_x1_0()
out_student = student.net(input, class_dim=class_dim)
# teacher
teacher = ResNet50_vd()
out_teacher = teacher.net(input, class_dim=class_dim)
out_teacher.stop_gradient = True
return out_teacher, out_student
class ResNeXt101_32x16d_wsl_distill_ResNet50_vd():
def net(self, input, class_dim=1000):
# student
student = ResNet50_vd()
out_student = student.net(input, class_dim=class_dim)
# teacher
teacher = ResNeXt101_32x16d_wsl()
out_teacher = teacher.net(input, class_dim=class_dim)
out_teacher.stop_gradient = True
return out_teacher, out_student