173 lines
6.0 KiB
Python
173 lines
6.0 KiB
Python
|
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
||
|
#
|
||
|
#Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
#you may not use this file except in compliance with the License.
|
||
|
#You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
#Unless required by applicable law or agreed to in writing, software
|
||
|
#distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
#See the License for the specific language governing permissions and
|
||
|
#limitations under the License.
|
||
|
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import math
|
||
|
|
||
|
import paddle
|
||
|
import paddle.fluid as fluid
|
||
|
|
||
|
__all__ = ['AlexNet']
|
||
|
|
||
|
|
||
|
class AlexNet():
|
||
|
def __init__(self):
|
||
|
pass
|
||
|
|
||
|
def net(self, input, class_dim=1000):
|
||
|
stdv = 1.0 / math.sqrt(input.shape[1] * 11 * 11)
|
||
|
layer_name = [
|
||
|
"conv1", "conv2", "conv3", "conv4", "conv5", "fc6", "fc7", "fc8"
|
||
|
]
|
||
|
conv1 = fluid.layers.conv2d(
|
||
|
input=input,
|
||
|
num_filters=64,
|
||
|
filter_size=11,
|
||
|
stride=4,
|
||
|
padding=2,
|
||
|
groups=1,
|
||
|
act='relu',
|
||
|
bias_attr=fluid.param_attr.ParamAttr(
|
||
|
initializer=fluid.initializer.Uniform(-stdv, stdv),
|
||
|
name=layer_name[0] + "_offset"),
|
||
|
param_attr=fluid.param_attr.ParamAttr(
|
||
|
initializer=fluid.initializer.Uniform(-stdv, stdv),
|
||
|
name=layer_name[0] + "_weights"))
|
||
|
pool1 = fluid.layers.pool2d(
|
||
|
input=conv1,
|
||
|
pool_size=3,
|
||
|
pool_stride=2,
|
||
|
pool_padding=0,
|
||
|
pool_type='max')
|
||
|
|
||
|
stdv = 1.0 / math.sqrt(pool1.shape[1] * 5 * 5)
|
||
|
conv2 = fluid.layers.conv2d(
|
||
|
input=pool1,
|
||
|
num_filters=192,
|
||
|
filter_size=5,
|
||
|
stride=1,
|
||
|
padding=2,
|
||
|
groups=1,
|
||
|
act='relu',
|
||
|
bias_attr=fluid.param_attr.ParamAttr(
|
||
|
initializer=fluid.initializer.Uniform(-stdv, stdv),
|
||
|
name=layer_name[1] + "_offset"),
|
||
|
param_attr=fluid.param_attr.ParamAttr(
|
||
|
initializer=fluid.initializer.Uniform(-stdv, stdv),
|
||
|
name=layer_name[1] + "_weights"))
|
||
|
pool2 = fluid.layers.pool2d(
|
||
|
input=conv2,
|
||
|
pool_size=3,
|
||
|
pool_stride=2,
|
||
|
pool_padding=0,
|
||
|
pool_type='max')
|
||
|
|
||
|
stdv = 1.0 / math.sqrt(pool2.shape[1] * 3 * 3)
|
||
|
conv3 = fluid.layers.conv2d(
|
||
|
input=pool2,
|
||
|
num_filters=384,
|
||
|
filter_size=3,
|
||
|
stride=1,
|
||
|
padding=1,
|
||
|
groups=1,
|
||
|
act='relu',
|
||
|
bias_attr=fluid.param_attr.ParamAttr(
|
||
|
initializer=fluid.initializer.Uniform(-stdv, stdv),
|
||
|
name=layer_name[2] + "_offset"),
|
||
|
param_attr=fluid.param_attr.ParamAttr(
|
||
|
initializer=fluid.initializer.Uniform(-stdv, stdv),
|
||
|
name=layer_name[2] + "_weights"))
|
||
|
|
||
|
stdv = 1.0 / math.sqrt(conv3.shape[1] * 3 * 3)
|
||
|
conv4 = fluid.layers.conv2d(
|
||
|
input=conv3,
|
||
|
num_filters=256,
|
||
|
filter_size=3,
|
||
|
stride=1,
|
||
|
padding=1,
|
||
|
groups=1,
|
||
|
act='relu',
|
||
|
bias_attr=fluid.param_attr.ParamAttr(
|
||
|
initializer=fluid.initializer.Uniform(-stdv, stdv),
|
||
|
name=layer_name[3] + "_offset"),
|
||
|
param_attr=fluid.param_attr.ParamAttr(
|
||
|
initializer=fluid.initializer.Uniform(-stdv, stdv),
|
||
|
name=layer_name[3] + "_weights"))
|
||
|
|
||
|
stdv = 1.0 / math.sqrt(conv4.shape[1] * 3 * 3)
|
||
|
conv5 = fluid.layers.conv2d(
|
||
|
input=conv4,
|
||
|
num_filters=256,
|
||
|
filter_size=3,
|
||
|
stride=1,
|
||
|
padding=1,
|
||
|
groups=1,
|
||
|
act='relu',
|
||
|
bias_attr=fluid.param_attr.ParamAttr(
|
||
|
initializer=fluid.initializer.Uniform(-stdv, stdv),
|
||
|
name=layer_name[4] + "_offset"),
|
||
|
param_attr=fluid.param_attr.ParamAttr(
|
||
|
initializer=fluid.initializer.Uniform(-stdv, stdv),
|
||
|
name=layer_name[4] + "_weights"))
|
||
|
pool5 = fluid.layers.pool2d(
|
||
|
input=conv5,
|
||
|
pool_size=3,
|
||
|
pool_stride=2,
|
||
|
pool_padding=0,
|
||
|
pool_type='max')
|
||
|
|
||
|
drop6 = fluid.layers.dropout(x=pool5, dropout_prob=0.5)
|
||
|
stdv = 1.0 / math.sqrt(drop6.shape[1] * drop6.shape[2] *
|
||
|
drop6.shape[3] * 1.0)
|
||
|
|
||
|
fc6 = fluid.layers.fc(
|
||
|
input=drop6,
|
||
|
size=4096,
|
||
|
act='relu',
|
||
|
bias_attr=fluid.param_attr.ParamAttr(
|
||
|
initializer=fluid.initializer.Uniform(-stdv, stdv),
|
||
|
name=layer_name[5] + "_offset"),
|
||
|
param_attr=fluid.param_attr.ParamAttr(
|
||
|
initializer=fluid.initializer.Uniform(-stdv, stdv),
|
||
|
name=layer_name[5] + "_weights"))
|
||
|
|
||
|
drop7 = fluid.layers.dropout(x=fc6, dropout_prob=0.5)
|
||
|
stdv = 1.0 / math.sqrt(drop7.shape[1] * 1.0)
|
||
|
|
||
|
fc7 = fluid.layers.fc(
|
||
|
input=drop7,
|
||
|
size=4096,
|
||
|
act='relu',
|
||
|
bias_attr=fluid.param_attr.ParamAttr(
|
||
|
initializer=fluid.initializer.Uniform(-stdv, stdv),
|
||
|
name=layer_name[6] + "_offset"),
|
||
|
param_attr=fluid.param_attr.ParamAttr(
|
||
|
initializer=fluid.initializer.Uniform(-stdv, stdv),
|
||
|
name=layer_name[6] + "_weights"))
|
||
|
|
||
|
stdv = 1.0 / math.sqrt(fc7.shape[1] * 1.0)
|
||
|
out = fluid.layers.fc(
|
||
|
input=fc7,
|
||
|
size=class_dim,
|
||
|
bias_attr=fluid.param_attr.ParamAttr(
|
||
|
initializer=fluid.initializer.Uniform(-stdv, stdv),
|
||
|
name=layer_name[7] + "_offset"),
|
||
|
param_attr=fluid.param_attr.ParamAttr(
|
||
|
initializer=fluid.initializer.Uniform(-stdv, stdv),
|
||
|
name=layer_name[7] + "_weights"))
|
||
|
return out
|