mirror of
https://github.com/PaddlePaddle/PaddleClas.git
synced 2025-06-03 21:55:06 +08:00
322 lines
14 KiB
Python
322 lines
14 KiB
Python
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import math
|
||
|
|
||
|
import paddle
|
||
|
import paddle.fluid as fluid
|
||
|
from paddle.fluid.param_attr import ParamAttr
|
||
|
from paddle.fluid.initializer import MSRA
|
||
|
from paddle.fluid.contrib.model_stat import summary
|
||
|
|
||
|
__all__ = ["GhostNet", "GhostNet_0_5", "GhostNet_1_0", "GhostNet_1_3"]
|
||
|
|
||
|
class GhostNet():
|
||
|
def __init__(self, width_mult):
|
||
|
cfgs = [
|
||
|
# k, t, c, SE, s
|
||
|
[3, 16, 16, 0, 1],
|
||
|
[3, 48, 24, 0, 2],
|
||
|
[3, 72, 24, 0, 1],
|
||
|
[5, 72, 40, 1, 2],
|
||
|
[5, 120, 40, 1, 1],
|
||
|
[3, 240, 80, 0, 2],
|
||
|
[3, 200, 80, 0, 1],
|
||
|
[3, 184, 80, 0, 1],
|
||
|
[3, 184, 80, 0, 1],
|
||
|
[3, 480, 112, 1, 1],
|
||
|
[3, 672, 112, 1, 1],
|
||
|
[5, 672, 160, 1, 2],
|
||
|
[5, 960, 160, 0, 1],
|
||
|
[5, 960, 160, 1, 1],
|
||
|
[5, 960, 160, 0, 1],
|
||
|
[5, 960, 160, 1, 1]
|
||
|
]
|
||
|
self.cfgs = cfgs
|
||
|
self.width_mult = width_mult
|
||
|
|
||
|
def _make_divisible(self, v, divisor, min_value=None):
|
||
|
"""
|
||
|
This function is taken from the original tf repo.
|
||
|
It ensures that all layers have a channel number that is divisible by 8
|
||
|
It can be seen here:
|
||
|
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
|
||
|
"""
|
||
|
if min_value is None:
|
||
|
min_value = divisor
|
||
|
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
|
||
|
# Make sure that round down does not go down by more than 10%.
|
||
|
if new_v < 0.9 * v:
|
||
|
new_v += divisor
|
||
|
return new_v
|
||
|
|
||
|
def conv_bn_layer(self,
|
||
|
input,
|
||
|
num_filters,
|
||
|
filter_size,
|
||
|
stride=1,
|
||
|
groups=1,
|
||
|
act=None,
|
||
|
name=None,
|
||
|
data_format="NCHW"):
|
||
|
x = fluid.layers.conv2d(input=input,
|
||
|
num_filters=num_filters,
|
||
|
filter_size=filter_size,
|
||
|
stride=stride,
|
||
|
padding=(filter_size-1)//2,
|
||
|
groups=groups,
|
||
|
act=None,
|
||
|
param_attr=ParamAttr(
|
||
|
initializer=fluid.initializer.MSRA(),name=name+"_weights"),
|
||
|
bias_attr=False,
|
||
|
name=name+"_conv_op",
|
||
|
data_format=data_format)
|
||
|
|
||
|
x = fluid.layers.batch_norm(input=x,
|
||
|
act=act,
|
||
|
name=name+"_bn",
|
||
|
param_attr=ParamAttr(name=name+"_bn_scale", regularizer=fluid.regularizer.L2DecayRegularizer(regularization_coeff=0.0)),
|
||
|
bias_attr=ParamAttr(name=name+"_bn_offset", regularizer=fluid.regularizer.L2DecayRegularizer(regularization_coeff=0.0)),
|
||
|
moving_mean_name=name+"_bn_mean",
|
||
|
moving_variance_name=name+"_bn_variance",
|
||
|
data_layout=data_format)
|
||
|
return x
|
||
|
|
||
|
|
||
|
def SElayer(self,
|
||
|
input,
|
||
|
num_channels,
|
||
|
reduction_ratio=4,
|
||
|
name=None):
|
||
|
pool = fluid.layers.pool2d(
|
||
|
input=input, pool_size=0, pool_type='avg', global_pooling=True)
|
||
|
stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
|
||
|
squeeze = fluid.layers.fc(
|
||
|
input=pool,
|
||
|
size=num_channels // reduction_ratio,
|
||
|
act='relu',
|
||
|
param_attr=fluid.param_attr.ParamAttr(
|
||
|
initializer=fluid.initializer.Uniform(-stdv, stdv),
|
||
|
name=name + '_sqz_weights'),
|
||
|
bias_attr=ParamAttr(name=name + '_sqz_offset'))
|
||
|
stdv = 1.0 / math.sqrt(squeeze.shape[1] * 1.0)
|
||
|
excitation = fluid.layers.fc(
|
||
|
input=squeeze,
|
||
|
size=num_channels,
|
||
|
act=None,
|
||
|
param_attr=fluid.param_attr.ParamAttr(
|
||
|
initializer=fluid.initializer.Uniform(-stdv, stdv),
|
||
|
name=name + '_exc_weights'),
|
||
|
bias_attr=ParamAttr(name=name + '_exc_offset'))
|
||
|
#ones = fluid.layers.fill_constant(excitation.shape, "float32", 1)
|
||
|
#zeros = fluid.layers.fill_constant(excitation.shape, "float32", 0)
|
||
|
#excitation = fluid.layers.elementwise_max(excitation, zeros)
|
||
|
# excitation = fluid.layers.elementwise_min(excitation, ones)
|
||
|
excitation = fluid.layers.clip(x=excitation,
|
||
|
min=0,
|
||
|
max=1,
|
||
|
name=name+'_clip')
|
||
|
scale = fluid.layers.elementwise_mul(x=input, y=excitation, axis=0)
|
||
|
return scale
|
||
|
|
||
|
def depthwise_conv(self,
|
||
|
inp,
|
||
|
oup,
|
||
|
kernel_size,
|
||
|
stride=1,
|
||
|
relu=False,
|
||
|
name=None,
|
||
|
data_format="NCHW"):
|
||
|
return self.conv_bn_layer(input=inp,
|
||
|
num_filters=oup,
|
||
|
filter_size=kernel_size,
|
||
|
stride=stride,
|
||
|
groups=inp.shape[1] if data_format=="NCHW" else inp.shape[-1],
|
||
|
act="relu" if relu else None,
|
||
|
name=name+"_dw",
|
||
|
data_format=data_format)
|
||
|
|
||
|
def GhostModule(self,
|
||
|
inp,
|
||
|
oup,
|
||
|
kernel_size=1,
|
||
|
ratio=2,
|
||
|
dw_size=3,
|
||
|
stride=1,
|
||
|
relu=True,
|
||
|
name=None,
|
||
|
data_format="NCHW"):
|
||
|
self.oup=oup
|
||
|
init_channels = int(math.ceil(oup/ratio))
|
||
|
new_channels = int(init_channels*(ratio-1))
|
||
|
primary_conv = self.conv_bn_layer(input=inp,
|
||
|
num_filters=init_channels,
|
||
|
filter_size=kernel_size,
|
||
|
stride=stride,
|
||
|
groups=1,
|
||
|
act="relu" if relu else None,
|
||
|
name=name+"_primary_conv",
|
||
|
data_format="NCHW")
|
||
|
cheap_operation = self.conv_bn_layer(input=primary_conv,
|
||
|
num_filters=new_channels,
|
||
|
filter_size=dw_size,
|
||
|
stride=1,
|
||
|
groups=init_channels,
|
||
|
act="relu" if relu else None,
|
||
|
name=name+"_cheap_operation",
|
||
|
data_format=data_format)
|
||
|
out = fluid.layers.concat([primary_conv, cheap_operation], axis=1, name=name+"_concat")
|
||
|
# return out[:, :self.oup, :, :]
|
||
|
print(self.oup)
|
||
|
print(out.shape)
|
||
|
return fluid.layers.slice(out, axes=[1], starts=[0], ends=[self.oup])
|
||
|
|
||
|
def GhostBottleneck(self,
|
||
|
inp,
|
||
|
hidden_dim,
|
||
|
oup,
|
||
|
kernel_size,
|
||
|
stride,
|
||
|
use_se,
|
||
|
name=None,
|
||
|
data_format="NCHW"):
|
||
|
inp_channels = inp.shape[1]
|
||
|
x = self.GhostModule(inp=inp,
|
||
|
oup=hidden_dim,
|
||
|
kernel_size=1,
|
||
|
stride=1,
|
||
|
relu=True,
|
||
|
name=name+"GhostBottle_1",
|
||
|
data_format="NCHW")
|
||
|
if stride==2:
|
||
|
x = self.depthwise_conv(inp=x,
|
||
|
oup=hidden_dim,
|
||
|
kernel_size=kernel_size,
|
||
|
stride=stride,
|
||
|
relu=False,
|
||
|
name=name+"_dw2",
|
||
|
data_format="NCHW")
|
||
|
if use_se:
|
||
|
x = self.SElayer(input=x,
|
||
|
num_channels=hidden_dim,
|
||
|
name=name+"SElayer")
|
||
|
x = self.GhostModule(inp=x,
|
||
|
oup=oup,
|
||
|
kernel_size=1,
|
||
|
relu=False,
|
||
|
name=name+"GhostModule_2")
|
||
|
if stride==1 and inp_channels==oup:
|
||
|
shortcut = inp
|
||
|
else:
|
||
|
shortcut = self.depthwise_conv(inp=inp,
|
||
|
oup=inp_channels,
|
||
|
kernel_size=kernel_size,
|
||
|
stride=stride,
|
||
|
relu=False,
|
||
|
name=name+"shortcut_depthwise_conv",
|
||
|
data_format="NCHW")
|
||
|
shortcut = self.conv_bn_layer(input=shortcut,
|
||
|
num_filters=oup,
|
||
|
filter_size=1,
|
||
|
stride=1,
|
||
|
groups=1,
|
||
|
act=None,
|
||
|
name=name+"shortcut_conv_bn",
|
||
|
data_format="NCHW")
|
||
|
return fluid.layers.elementwise_add(x=x,
|
||
|
y=shortcut,
|
||
|
axis=-1,
|
||
|
act=None,
|
||
|
name=name+"elementwise_add")
|
||
|
|
||
|
def net(self,
|
||
|
input,
|
||
|
class_dim=1000):
|
||
|
#build first layer:
|
||
|
output_channel = int(self._make_divisible(16*self.width_mult, 4))
|
||
|
#print(output_channel)
|
||
|
x = self.conv_bn_layer(input=input,
|
||
|
num_filters=output_channel,
|
||
|
filter_size=3,
|
||
|
stride=2,
|
||
|
groups=1,
|
||
|
act="relu",
|
||
|
name="firstlayer",
|
||
|
data_format="NCHW")
|
||
|
input_channel = output_channel
|
||
|
#build inverted residual blocks
|
||
|
idx = 0
|
||
|
fm = {}
|
||
|
for k, exp_size, c, use_se, s in self.cfgs:
|
||
|
output_channel = int(self._make_divisible(c*self.width_mult, 4))
|
||
|
hidden_channel = int(self._make_divisible(exp_size*self.width_mult, 4))
|
||
|
#print(output_channel)
|
||
|
#print(hidden_channel)
|
||
|
x = self.GhostBottleneck(inp=x,
|
||
|
hidden_dim=hidden_channel,
|
||
|
oup=output_channel,
|
||
|
kernel_size=k,
|
||
|
stride=s,
|
||
|
use_se=use_se,
|
||
|
name="GhostBottle_"+str(idx),
|
||
|
data_format="NCHW")
|
||
|
input_channel = output_channel
|
||
|
fm[str(idx)] = x
|
||
|
idx+=1
|
||
|
#build last several layers
|
||
|
output_channel = int(self._make_divisible(exp_size * self.width_mult, 4))
|
||
|
x = self.conv_bn_layer(input=x,
|
||
|
num_filters=output_channel,
|
||
|
filter_size=1,
|
||
|
stride=1,
|
||
|
groups=1,
|
||
|
act="relu",
|
||
|
name="lastlayer",
|
||
|
data_format="NCHW")
|
||
|
x = fluid.layers.pool2d(input=x,
|
||
|
pool_type='avg',
|
||
|
global_pooling=True,
|
||
|
data_format="NCHW")
|
||
|
input_channel = output_channel
|
||
|
output_channel = 1280
|
||
|
|
||
|
stdv = 1.0/math.sqrt(x.shape[1]*1.0)
|
||
|
out = fluid.layers.conv2d(input=x,
|
||
|
num_filters=output_channel,
|
||
|
filter_size=1,
|
||
|
groups=1,
|
||
|
param_attr=ParamAttr(name="fc_0_w", initializer=fluid.initializer.Uniform(-stdv, stdv)),
|
||
|
bias_attr=False,
|
||
|
name="fc_0")
|
||
|
out = fluid.layers.batch_norm(input=out,
|
||
|
act="relu",
|
||
|
name="fc_0_bn",
|
||
|
param_attr=ParamAttr(name="fc_0_bn_scale", regularizer=fluid.regularizer.L2DecayRegularizer(regularization_coeff=0.0)),
|
||
|
bias_attr=ParamAttr(name="fc_0_bn_offset", regularizer=fluid.regularizer.L2DecayRegularizer(regularization_coeff=0.0)),
|
||
|
moving_mean_name="fc_0_bn_mean",
|
||
|
moving_variance_name="fc_0_bn_variance",
|
||
|
data_layout="NCHW")
|
||
|
out = fluid.layers.dropout(x=out, dropout_prob=0.2)
|
||
|
stdv = 1.0/math.sqrt(out.shape[1]*1.0)
|
||
|
out = fluid.layers.fc(input=out,
|
||
|
size=class_dim,
|
||
|
param_attr=ParamAttr(name="fc_1_w", initializer=fluid.initializer.Uniform(-stdv, stdv)),
|
||
|
bias_attr=ParamAttr(name="fc_1_bias"))
|
||
|
|
||
|
return out, fm
|
||
|
|
||
|
def GhostNet_0_5():
|
||
|
model = GhostNet(width_mult=0.5)
|
||
|
return model
|
||
|
|
||
|
def GhostNet_1_0():
|
||
|
model = GhostNet(width_mult=1.0)
|
||
|
return model
|
||
|
|
||
|
def GhostNet_1_3():
|
||
|
model = GhostNet(width_mult=1.3)
|
||
|
return model
|
||
|
|
||
|
|