PaddleClas/ppcls/arch/backbone/legendary_models/resnet.py

535 lines
19 KiB
Python
Raw Normal View History

2021-05-28 10:50:17 +08:00
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
2021-05-25 19:18:14 +08:00
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
2021-05-28 10:50:17 +08:00
from __future__ import absolute_import, division, print_function
2021-05-25 19:18:14 +08:00
import numpy as np
import paddle
from paddle import ParamAttr
import paddle.nn as nn
from paddle.nn import Conv2D, BatchNorm, Linear
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
from paddle.nn.initializer import Uniform
import math
2021-05-28 10:57:26 +08:00
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
2021-05-31 16:01:02 +08:00
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
2021-05-28 10:50:17 +08:00
MODEL_URLS = {
2021-05-31 16:01:02 +08:00
"ResNet18":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet18_pretrained.pdparams",
"ResNet18_vd":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet18_vd_pretrained.pdparams",
"ResNet34":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_pretrained.pdparams",
"ResNet34_vd":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_pretrained.pdparams",
"ResNet50":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_pretrained.pdparams",
"ResNet50_vd":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_pretrained.pdparams",
"ResNet101":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_pretrained.pdparams",
"ResNet101_vd":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_pretrained.pdparams",
"ResNet152":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet152_pretrained.pdparams",
"ResNet152_vd":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet152_vd_pretrained.pdparams",
"ResNet200_vd":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet200_vd_pretrained.pdparams",
2021-05-28 10:50:17 +08:00
}
2021-05-25 19:18:14 +08:00
2021-05-28 10:50:17 +08:00
__all__ = MODEL_URLS.keys()
'''
ResNet config: dict.
key: depth of ResNet.
values: config's dict of specific model.
keys:
block_type: Two different blocks in ResNet, BasicBlock and BottleneckBlock are optional.
block_depth: The number of blocks in different stages in ResNet.
num_channels: The number of channels to enter the next stage.
'''
2021-05-25 19:18:14 +08:00
NET_CONFIG = {
"18": {
2021-05-31 16:01:02 +08:00
"block_type": "BasicBlock",
"block_depth": [2, 2, 2, 2],
"num_channels": [64, 64, 128, 256]
},
2021-05-25 19:18:14 +08:00
"34": {
2021-05-31 16:01:02 +08:00
"block_type": "BasicBlock",
"block_depth": [3, 4, 6, 3],
"num_channels": [64, 64, 128, 256]
},
2021-05-25 19:18:14 +08:00
"50": {
2021-05-31 16:01:02 +08:00
"block_type": "BottleneckBlock",
"block_depth": [3, 4, 6, 3],
"num_channels": [64, 256, 512, 1024]
},
2021-05-25 19:18:14 +08:00
"101": {
2021-05-31 16:01:02 +08:00
"block_type": "BottleneckBlock",
"block_depth": [3, 4, 23, 3],
"num_channels": [64, 256, 512, 1024]
},
2021-05-25 19:18:14 +08:00
"152": {
2021-05-31 16:01:02 +08:00
"block_type": "BottleneckBlock",
"block_depth": [3, 8, 36, 3],
"num_channels": [64, 256, 512, 1024]
},
2021-05-25 19:18:14 +08:00
"200": {
2021-05-31 16:01:02 +08:00
"block_type": "BottleneckBlock",
"block_depth": [3, 12, 48, 3],
"num_channels": [64, 256, 512, 1024]
},
2021-05-25 19:18:14 +08:00
}
class ConvBNLayer(TheseusLayer):
def __init__(self,
num_channels,
num_filters,
filter_size,
stride=1,
groups=1,
is_vd_mode=False,
act=None,
lr_mult=1.0,
data_format="NCHW"):
2021-05-28 10:50:17 +08:00
super().__init__()
2021-05-25 19:18:14 +08:00
self.is_vd_mode = is_vd_mode
self.act = act
2021-05-28 11:29:37 +08:00
self.avg_pool = AvgPool2D(
2021-05-25 19:18:14 +08:00
kernel_size=2, stride=2, padding=0, ceil_mode=True)
self.conv = Conv2D(
in_channels=num_channels,
out_channels=num_filters,
kernel_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
weight_attr=ParamAttr(learning_rate=lr_mult),
bias_attr=False,
data_format=data_format)
2021-05-25 19:18:14 +08:00
self.bn = BatchNorm(
num_filters,
param_attr=ParamAttr(learning_rate=lr_mult),
bias_attr=ParamAttr(learning_rate=lr_mult),
data_layout=data_format)
2021-05-25 19:18:14 +08:00
self.relu = nn.ReLU()
def forward(self, x):
if self.is_vd_mode:
2021-05-28 11:29:37 +08:00
x = self.avg_pool(x)
2021-05-25 19:18:14 +08:00
x = self.conv(x)
x = self.bn(x)
if self.act:
x = self.relu(x)
return x
class BottleneckBlock(TheseusLayer):
def __init__(self,
num_channels,
num_filters,
stride,
shortcut=True,
if_first=False,
lr_mult=1.0,
data_format="NCHW"):
2021-05-28 10:50:17 +08:00
super().__init__()
2021-05-25 19:18:14 +08:00
self.conv0 = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters,
filter_size=1,
2021-05-28 10:50:17 +08:00
act="relu",
lr_mult=lr_mult,
data_format=data_format)
2021-05-25 19:18:14 +08:00
self.conv1 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters,
filter_size=3,
stride=stride,
2021-05-28 10:50:17 +08:00
act="relu",
lr_mult=lr_mult,
data_format=data_format)
2021-05-25 19:18:14 +08:00
self.conv2 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters * 4,
filter_size=1,
act=None,
lr_mult=lr_mult,
data_format=data_format)
2021-05-25 19:18:14 +08:00
if not shortcut:
self.short = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters * 4,
filter_size=1,
stride=stride if if_first else 1,
is_vd_mode=False if if_first else True,
lr_mult=lr_mult,
data_format=data_format)
2021-05-25 19:18:14 +08:00
self.relu = nn.ReLU()
self.shortcut = shortcut
def forward(self, x):
identity = x
x = self.conv0(x)
x = self.conv1(x)
x = self.conv2(x)
if self.shortcut:
short = identity
else:
short = self.short(identity)
x = paddle.add(x=x, y=short)
x = self.relu(x)
return x
class BasicBlock(TheseusLayer):
def __init__(self,
num_channels,
num_filters,
stride,
shortcut=True,
if_first=False,
lr_mult=1.0,
data_format="NCHW"):
2021-05-28 10:50:17 +08:00
super().__init__()
2021-05-25 19:18:14 +08:00
self.stride = stride
self.conv0 = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters,
filter_size=3,
stride=stride,
2021-05-28 10:50:17 +08:00
act="relu",
lr_mult=lr_mult,
data_format=data_format)
2021-05-25 19:18:14 +08:00
self.conv1 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters,
filter_size=3,
act=None,
lr_mult=lr_mult,
data_format=data_format)
2021-05-25 19:18:14 +08:00
if not shortcut:
self.short = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters,
filter_size=1,
stride=stride if if_first else 1,
is_vd_mode=False if if_first else True,
lr_mult=lr_mult,
data_format=data_format)
2021-05-25 19:18:14 +08:00
self.shortcut = shortcut
self.relu = nn.ReLU()
def forward(self, x):
identity = x
x = self.conv0(x)
x = self.conv1(x)
if self.shortcut:
short = identity
else:
short = self.short(identity)
x = paddle.add(x=x, y=short)
x = self.relu(x)
return x
class ResNet(TheseusLayer):
2021-05-28 10:50:17 +08:00
"""
ResNet
Args:
config: dict. config of ResNet.
version: str="vb". Different version of ResNet, version vd can perform better.
class_num: int=1000. The number of classes.
lr_mult_list: list. Control the learning rate of different stages.
Returns:
model: nn.Layer. Specific ResNet model depends on args.
2021-05-25 19:18:14 +08:00
"""
2021-05-31 16:01:02 +08:00
2021-05-25 19:18:14 +08:00
def __init__(self,
config,
2021-05-28 10:50:17 +08:00
version="vb",
class_num=1000,
lr_mult_list=[1.0, 1.0, 1.0, 1.0, 1.0],
data_format="NCHW",
2021-09-15 11:03:46 +08:00
input_image_channel=3,
return_patterns=None):
2021-05-28 10:50:17 +08:00
super().__init__()
2021-05-25 19:18:14 +08:00
self.cfg = config
self.lr_mult_list = lr_mult_list
self.is_vd_mode = version == "vd"
2021-05-28 10:50:17 +08:00
self.class_num = class_num
self.num_filters = [64, 128, 256, 512]
self.block_depth = self.cfg["block_depth"]
self.block_type = self.cfg["block_type"]
self.num_channels = self.cfg["num_channels"]
self.channels_mult = 1 if self.num_channels[-1] == 256 else 4
2021-05-31 16:01:02 +08:00
2021-05-25 19:18:14 +08:00
assert isinstance(self.lr_mult_list, (
list, tuple
)), "lr_mult_list should be in (list, tuple) but got {}".format(
type(self.lr_mult_list))
2021-05-31 16:01:02 +08:00
assert len(self.lr_mult_list
) == 5, "lr_mult_list length should be 5 but got {}".format(
len(self.lr_mult_list))
2021-05-25 19:18:14 +08:00
self.stem_cfg = {
2021-05-28 10:50:17 +08:00
#num_channels, num_filters, filter_size, stride
"vb": [[input_image_channel, 64, 7, 2]],
"vd":
[[input_image_channel, 32, 3, 2], [32, 32, 3, 1], [32, 64, 3, 1]]
2021-05-31 16:01:02 +08:00
}
self.stem = nn.Sequential(* [
2021-05-25 19:18:14 +08:00
ConvBNLayer(
2021-05-31 16:01:02 +08:00
num_channels=in_c,
num_filters=out_c,
filter_size=k,
stride=s,
act="relu",
lr_mult=self.lr_mult_list[0],
data_format=data_format)
2021-05-25 19:18:14 +08:00
for in_c, out_c, k, s in self.stem_cfg[version]
])
2021-05-31 16:01:02 +08:00
self.max_pool = MaxPool2D(
kernel_size=3, stride=2, padding=1, data_format=data_format)
2021-05-28 10:50:17 +08:00
block_list = []
for block_idx in range(len(self.block_depth)):
2021-05-25 19:18:14 +08:00
shortcut = False
2021-05-28 10:50:17 +08:00
for i in range(self.block_depth[block_idx]):
2021-05-31 16:01:02 +08:00
block_list.append(globals()[self.block_type](
num_channels=self.num_channels[block_idx] if i == 0 else
self.num_filters[block_idx] * self.channels_mult,
2021-05-28 10:50:17 +08:00
num_filters=self.num_filters[block_idx],
stride=2 if i == 0 and block_idx != 0 else 1,
2021-05-25 19:18:14 +08:00
shortcut=shortcut,
2021-05-28 10:50:17 +08:00
if_first=block_idx == i == 0 if version == "vd" else True,
lr_mult=self.lr_mult_list[block_idx + 1],
data_format=data_format))
2021-05-31 16:01:02 +08:00
shortcut = True
2021-05-28 10:50:17 +08:00
self.blocks = nn.Sequential(*block_list)
2021-05-25 19:18:14 +08:00
self.avg_pool = AdaptiveAvgPool2D(1, data_format=data_format)
self.flatten = nn.Flatten()
2021-05-31 16:49:25 +08:00
self.avg_pool_channels = self.num_channels[-1] * 2
2021-05-28 11:29:37 +08:00
stdv = 1.0 / math.sqrt(self.avg_pool_channels * 1.0)
2021-05-28 11:32:51 +08:00
self.fc = Linear(
2021-05-28 11:29:37 +08:00
self.avg_pool_channels,
2021-05-28 10:50:17 +08:00
self.class_num,
2021-05-31 16:01:02 +08:00
weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv)))
2021-05-25 19:18:14 +08:00
self.data_format = data_format
2021-09-15 11:03:46 +08:00
if return_patterns is not None:
self.update_res(return_patterns)
self.register_forward_post_hook(self._return_dict_hook)
2021-05-25 19:18:14 +08:00
def forward(self, x):
with paddle.static.amp.fp16_guard():
if self.data_format == "NHWC":
x = paddle.transpose(x, [0, 2, 3, 1])
x.stop_gradient = True
x = self.stem(x)
x = self.max_pool(x)
x = self.blocks(x)
x = self.avg_pool(x)
x = self.flatten(x)
x = self.fc(x)
2021-05-25 19:18:14 +08:00
return x
2021-05-31 16:01:02 +08:00
def _load_pretrained(pretrained, model, model_url, use_ssld):
if pretrained is False:
pass
elif pretrained is True:
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
elif isinstance(pretrained, str):
load_dygraph_pretrain(model, pretrained)
else:
raise RuntimeError(
"pretrained type is not available. Please use `string` or `boolean` type."
)
def ResNet18(pretrained=False, use_ssld=False, **kwargs):
2021-05-28 10:50:17 +08:00
"""
ResNet18
Args:
2021-05-31 16:01:02 +08:00
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
If str, means the path of the pretrained model.
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
2021-05-28 10:50:17 +08:00
Returns:
model: nn.Layer. Specific `ResNet18` model depends on args.
"""
2021-05-31 16:01:02 +08:00
model = ResNet(config=NET_CONFIG["18"], version="vb", **kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["ResNet18"], use_ssld)
2021-05-25 19:18:14 +08:00
return model
2021-05-28 10:50:17 +08:00
2021-05-31 16:01:02 +08:00
def ResNet18_vd(pretrained=False, use_ssld=False, **kwargs):
2021-05-28 10:50:17 +08:00
"""
ResNet18_vd
Args:
2021-05-31 16:01:02 +08:00
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
If str, means the path of the pretrained model.
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
2021-05-28 10:50:17 +08:00
Returns:
model: nn.Layer. Specific `ResNet18_vd` model depends on args.
"""
2021-05-31 16:01:02 +08:00
model = ResNet(config=NET_CONFIG["18"], version="vd", **kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["ResNet18_vd"], use_ssld)
2021-05-25 19:18:14 +08:00
return model
2021-05-28 10:50:17 +08:00
2021-05-31 16:01:02 +08:00
def ResNet34(pretrained=False, use_ssld=False, **kwargs):
2021-05-28 10:50:17 +08:00
"""
ResNet34
Args:
2021-05-31 16:01:02 +08:00
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
If str, means the path of the pretrained model.
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
2021-05-28 10:50:17 +08:00
Returns:
2021-05-28 11:34:39 +08:00
model: nn.Layer. Specific `ResNet34` model depends on args.
2021-05-28 10:50:17 +08:00
"""
2021-05-31 16:01:02 +08:00
model = ResNet(config=NET_CONFIG["34"], version="vb", **kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["ResNet34"], use_ssld)
2021-05-28 10:50:17 +08:00
return model
2021-05-31 16:01:02 +08:00
def ResNet34_vd(pretrained=False, use_ssld=False, **kwargs):
2021-05-28 10:50:17 +08:00
"""
ResNet34_vd
Args:
2021-05-31 16:01:02 +08:00
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
If str, means the path of the pretrained model.
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
2021-05-28 10:50:17 +08:00
Returns:
2021-05-28 11:34:39 +08:00
model: nn.Layer. Specific `ResNet34_vd` model depends on args.
2021-05-28 10:50:17 +08:00
"""
2021-05-31 16:01:02 +08:00
model = ResNet(config=NET_CONFIG["34"], version="vd", **kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["ResNet34_vd"], use_ssld)
2021-05-28 10:50:17 +08:00
return model
2021-05-31 16:01:02 +08:00
def ResNet50(pretrained=False, use_ssld=False, **kwargs):
2021-05-28 10:50:17 +08:00
"""
ResNet50
Args:
2021-05-31 16:01:02 +08:00
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
If str, means the path of the pretrained model.
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
2021-05-28 10:50:17 +08:00
Returns:
model: nn.Layer. Specific `ResNet50` model depends on args.
"""
2021-05-31 16:01:02 +08:00
model = ResNet(config=NET_CONFIG["50"], version="vb", **kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["ResNet50"], use_ssld)
2021-05-25 19:18:14 +08:00
return model
2021-05-28 10:50:17 +08:00
2021-05-31 16:01:02 +08:00
def ResNet50_vd(pretrained=False, use_ssld=False, **kwargs):
2021-05-28 10:50:17 +08:00
"""
ResNet50_vd
Args:
2021-05-31 16:01:02 +08:00
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
If str, means the path of the pretrained model.
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
2021-05-28 10:50:17 +08:00
Returns:
model: nn.Layer. Specific `ResNet50_vd` model depends on args.
"""
2021-05-31 16:01:02 +08:00
model = ResNet(config=NET_CONFIG["50"], version="vd", **kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["ResNet50_vd"], use_ssld)
2021-05-25 19:18:14 +08:00
return model
2021-05-28 10:50:17 +08:00
2021-05-31 16:01:02 +08:00
def ResNet101(pretrained=False, use_ssld=False, **kwargs):
2021-05-28 10:50:17 +08:00
"""
ResNet101
Args:
2021-05-31 16:01:02 +08:00
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
If str, means the path of the pretrained model.
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
2021-05-28 10:50:17 +08:00
Returns:
model: nn.Layer. Specific `ResNet101` model depends on args.
"""
2021-05-31 16:01:02 +08:00
model = ResNet(config=NET_CONFIG["101"], version="vb", **kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["ResNet101"], use_ssld)
2021-05-25 19:18:14 +08:00
return model
2021-05-28 10:50:17 +08:00
2021-05-31 16:01:02 +08:00
def ResNet101_vd(pretrained=False, use_ssld=False, **kwargs):
2021-05-28 10:50:17 +08:00
"""
ResNet101_vd
Args:
2021-05-31 16:01:02 +08:00
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
If str, means the path of the pretrained model.
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
2021-05-28 10:50:17 +08:00
Returns:
model: nn.Layer. Specific `ResNet101_vd` model depends on args.
"""
2021-05-31 16:01:02 +08:00
model = ResNet(config=NET_CONFIG["101"], version="vd", **kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["ResNet101_vd"], use_ssld)
2021-05-25 19:18:14 +08:00
return model
2021-05-28 10:50:17 +08:00
2021-05-31 16:01:02 +08:00
def ResNet152(pretrained=False, use_ssld=False, **kwargs):
2021-05-28 10:50:17 +08:00
"""
ResNet152
Args:
2021-05-31 16:01:02 +08:00
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
If str, means the path of the pretrained model.
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
2021-05-28 10:50:17 +08:00
Returns:
model: nn.Layer. Specific `ResNet152` model depends on args.
"""
2021-05-31 16:01:02 +08:00
model = ResNet(config=NET_CONFIG["152"], version="vb", **kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["ResNet152"], use_ssld)
2021-05-25 19:18:14 +08:00
return model
2021-05-28 10:50:17 +08:00
2021-05-31 16:01:02 +08:00
def ResNet152_vd(pretrained=False, use_ssld=False, **kwargs):
2021-05-28 10:50:17 +08:00
"""
ResNet152_vd
Args:
2021-05-31 16:01:02 +08:00
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
If str, means the path of the pretrained model.
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
2021-05-28 10:50:17 +08:00
Returns:
model: nn.Layer. Specific `ResNet152_vd` model depends on args.
"""
2021-05-31 16:01:02 +08:00
model = ResNet(config=NET_CONFIG["152"], version="vd", **kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["ResNet152_vd"], use_ssld)
2021-05-25 19:18:14 +08:00
return model
2021-05-31 16:01:02 +08:00
def ResNet200_vd(pretrained=False, use_ssld=False, **kwargs):
2021-05-28 10:50:17 +08:00
"""
ResNet200_vd
Args:
2021-05-31 16:01:02 +08:00
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
If str, means the path of the pretrained model.
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
2021-05-28 10:50:17 +08:00
Returns:
model: nn.Layer. Specific `ResNet200_vd` model depends on args.
"""
2021-05-31 16:01:02 +08:00
model = ResNet(config=NET_CONFIG["200"], version="vd", **kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["ResNet200_vd"], use_ssld)
2021-05-25 19:18:14 +08:00
return model