mirror of
https://github.com/PaddlePaddle/PaddleClas.git
synced 2025-06-03 21:55:06 +08:00
134 lines
5.2 KiB
Python
134 lines
5.2 KiB
Python
|
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
||
|
#
|
||
|
#Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
#you may not use this file except in compliance with the License.
|
||
|
#You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
#Unless required by applicable law or agreed to in writing, software
|
||
|
#distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
#See the License for the specific language governing permissions and
|
||
|
#limitations under the License.
|
||
|
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import math
|
||
|
import paddle
|
||
|
import paddle.fluid as fluid
|
||
|
from paddle.fluid.param_attr import ParamAttr
|
||
|
|
||
|
__all__ = ["SqueezeNet", "SqueezeNet1_0", "SqueezeNet1_1"]
|
||
|
|
||
|
|
||
|
class SqueezeNet():
|
||
|
def __init__(self, version='1.0'):
|
||
|
self.version = version
|
||
|
|
||
|
def net(self, input, class_dim=1000):
|
||
|
version = self.version
|
||
|
assert version in ['1.0', '1.1'], \
|
||
|
"supported version are {} but input version is {}".format(['1.0', '1.1'], version)
|
||
|
if version == '1.0':
|
||
|
conv = fluid.layers.conv2d(
|
||
|
input,
|
||
|
num_filters=96,
|
||
|
filter_size=7,
|
||
|
stride=2,
|
||
|
act='relu',
|
||
|
param_attr=fluid.param_attr.ParamAttr(name="conv1_weights"),
|
||
|
bias_attr=ParamAttr(name='conv1_offset'))
|
||
|
conv = fluid.layers.pool2d(
|
||
|
conv, pool_size=3, pool_stride=2, pool_type='max')
|
||
|
conv = self.make_fire(conv, 16, 64, 64, name='fire2')
|
||
|
conv = self.make_fire(conv, 16, 64, 64, name='fire3')
|
||
|
conv = self.make_fire(conv, 32, 128, 128, name='fire4')
|
||
|
conv = fluid.layers.pool2d(
|
||
|
conv, pool_size=3, pool_stride=2, pool_type='max')
|
||
|
conv = self.make_fire(conv, 32, 128, 128, name='fire5')
|
||
|
conv = self.make_fire(conv, 48, 192, 192, name='fire6')
|
||
|
conv = self.make_fire(conv, 48, 192, 192, name='fire7')
|
||
|
conv = self.make_fire(conv, 64, 256, 256, name='fire8')
|
||
|
conv = fluid.layers.pool2d(
|
||
|
conv, pool_size=3, pool_stride=2, pool_type='max')
|
||
|
conv = self.make_fire(conv, 64, 256, 256, name='fire9')
|
||
|
else:
|
||
|
conv = fluid.layers.conv2d(
|
||
|
input,
|
||
|
num_filters=64,
|
||
|
filter_size=3,
|
||
|
stride=2,
|
||
|
padding=1,
|
||
|
act='relu',
|
||
|
param_attr=fluid.param_attr.ParamAttr(name="conv1_weights"),
|
||
|
bias_attr=ParamAttr(name='conv1_offset'))
|
||
|
conv = fluid.layers.pool2d(
|
||
|
conv, pool_size=3, pool_stride=2, pool_type='max')
|
||
|
conv = self.make_fire(conv, 16, 64, 64, name='fire2')
|
||
|
conv = self.make_fire(conv, 16, 64, 64, name='fire3')
|
||
|
conv = fluid.layers.pool2d(
|
||
|
conv, pool_size=3, pool_stride=2, pool_type='max')
|
||
|
conv = self.make_fire(conv, 32, 128, 128, name='fire4')
|
||
|
conv = self.make_fire(conv, 32, 128, 128, name='fire5')
|
||
|
conv = fluid.layers.pool2d(
|
||
|
conv, pool_size=3, pool_stride=2, pool_type='max')
|
||
|
conv = self.make_fire(conv, 48, 192, 192, name='fire6')
|
||
|
conv = self.make_fire(conv, 48, 192, 192, name='fire7')
|
||
|
conv = self.make_fire(conv, 64, 256, 256, name='fire8')
|
||
|
conv = self.make_fire(conv, 64, 256, 256, name='fire9')
|
||
|
conv = fluid.layers.dropout(conv, dropout_prob=0.5)
|
||
|
conv = fluid.layers.conv2d(
|
||
|
conv,
|
||
|
num_filters=class_dim,
|
||
|
filter_size=1,
|
||
|
act='relu',
|
||
|
param_attr=fluid.param_attr.ParamAttr(name="conv10_weights"),
|
||
|
bias_attr=ParamAttr(name='conv10_offset'))
|
||
|
conv = fluid.layers.pool2d(conv, pool_type='avg', global_pooling=True)
|
||
|
out = fluid.layers.flatten(conv)
|
||
|
return out
|
||
|
|
||
|
def make_fire_conv(self,
|
||
|
input,
|
||
|
num_filters,
|
||
|
filter_size,
|
||
|
padding=0,
|
||
|
name=None):
|
||
|
conv = fluid.layers.conv2d(
|
||
|
input,
|
||
|
num_filters=num_filters,
|
||
|
filter_size=filter_size,
|
||
|
padding=padding,
|
||
|
act='relu',
|
||
|
param_attr=fluid.param_attr.ParamAttr(name=name + "_weights"),
|
||
|
bias_attr=ParamAttr(name=name + '_offset'))
|
||
|
return conv
|
||
|
|
||
|
def make_fire(self,
|
||
|
input,
|
||
|
squeeze_channels,
|
||
|
expand1x1_channels,
|
||
|
expand3x3_channels,
|
||
|
name=None):
|
||
|
conv = self.make_fire_conv(
|
||
|
input, squeeze_channels, 1, name=name + '_squeeze1x1')
|
||
|
conv_path1 = self.make_fire_conv(
|
||
|
conv, expand1x1_channels, 1, name=name + '_expand1x1')
|
||
|
conv_path2 = self.make_fire_conv(
|
||
|
conv, expand3x3_channels, 3, 1, name=name + '_expand3x3')
|
||
|
out = fluid.layers.concat([conv_path1, conv_path2], axis=1)
|
||
|
return out
|
||
|
|
||
|
|
||
|
def SqueezeNet1_0():
|
||
|
model = SqueezeNet(version='1.0')
|
||
|
return model
|
||
|
|
||
|
|
||
|
def SqueezeNet1_1():
|
||
|
model = SqueezeNet(version='1.1')
|
||
|
return model
|