PaddleClas/benchmark/run_benchmark.sh

57 lines
2.0 KiB
Bash
Raw Normal View History

2021-09-17 11:14:28 +08:00
#!/usr/bin/env bash
set -xe
# 运行示例CUDA_VISIBLE_DEVICES=0 bash run_benchmark.sh ${run_mode} ${bs_item} ${fp_item} 500 ${model_mode}
# 参数说明
function _set_params(){
run_mode=${1:-"sp"} # 单卡sp|多卡mp
batch_size=${2:-"64"}
fp_item=${3:-"fp32"} # fp32|fp16
epochs=${4:-"10"} # 可选,如果需要修改代码提前中断
model_name=${5:-"model_name"}
run_log_path="${TRAIN_LOG_DIR:-$(pwd)}/benchmark" # TRAIN_LOG_DIR 后续QA设置该参数
# 以下不用修改
device=${CUDA_VISIBLE_DEVICES//,/ }
arr=(${device})
num_gpu_devices=${#arr[*]}
2021-09-30 16:35:27 +08:00
log_file=${run_log_path}/clas_${model_name}_${run_mode}_bs${batch_size}_${fp_item}_${num_gpu_devices}
2021-09-17 11:14:28 +08:00
}
function _train(){
echo "Train on ${num_gpu_devices} GPUs"
echo "current CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES, gpus=$num_gpu_devices, batch_size=$batch_size"
if [ ${fp_item} = "fp32" ];then
2021-10-19 14:38:54 +08:00
model_config=`find ppcls/configs/ImageNet -name ${model_name}.yaml`
2021-09-17 11:14:28 +08:00
else
2021-10-19 14:38:54 +08:00
model_config=`find ppcls/configs/ImageNet -name ${model_name}_fp16.yaml`
2021-09-17 11:14:28 +08:00
fi
train_cmd="-c ${model_config} -o DataLoader.Train.sampler.batch_size=${batch_size} -o Global.epochs=${epochs}"
case ${run_mode} in
sp) train_cmd="python -u tools/train.py ${train_cmd}" ;;
mp)
train_cmd="python -m paddle.distributed.launch --log_dir=./mylog --gpus=$CUDA_VISIBLE_DEVICES tools/train.py ${train_cmd}"
log_parse_file="mylog/workerlog.0" ;;
*) echo "choose run_mode(sp or mp)"; exit 1;
esac
2021-09-30 16:35:27 +08:00
rm -rf mylog
2021-09-17 11:14:28 +08:00
# 以下不用修改
timeout 15m ${train_cmd} > ${log_file} 2>&1
if [ $? -ne 0 ];then
echo -e "${model_name}, FAIL"
export job_fail_flag=1
else
echo -e "${model_name}, SUCCESS"
export job_fail_flag=0
fi
kill -9 `ps -ef|grep 'python'|awk '{print $2}'`
if [ $run_mode = "mp" -a -d mylog ]; then
rm ${log_file}
cp mylog/workerlog.0 ${log_file}
fi
}
_set_params $@
_train