2022-05-15 03:28:58 +08:00
|
|
|
from __future__ import absolute_import
|
|
|
|
from __future__ import division
|
|
|
|
from __future__ import print_function
|
|
|
|
import os
|
|
|
|
import sys
|
|
|
|
__dir__ = os.path.dirname(os.path.abspath(__file__))
|
|
|
|
sys.path.append(os.path.abspath(os.path.join(__dir__, '../')))
|
|
|
|
|
2022-05-14 21:37:31 +08:00
|
|
|
import subprocess
|
2022-05-17 11:29:26 +08:00
|
|
|
import numpy as np
|
|
|
|
|
2022-05-14 21:37:31 +08:00
|
|
|
from ppcls.utils import config
|
|
|
|
|
|
|
|
|
|
|
|
def get_result(log_dir):
|
|
|
|
log_file = "{}/train.log".format(log_dir)
|
|
|
|
with open(log_file, "r") as f:
|
|
|
|
raw = f.read()
|
2022-05-15 03:28:58 +08:00
|
|
|
res = float(raw.split("best metric: ")[-1].split("]")[0])
|
2022-05-14 21:37:31 +08:00
|
|
|
return res
|
|
|
|
|
|
|
|
|
2022-06-07 17:25:22 +08:00
|
|
|
def search_train(search_list,
|
|
|
|
base_program,
|
|
|
|
base_output_dir,
|
|
|
|
search_key,
|
|
|
|
config_replace_value,
|
|
|
|
model_name,
|
|
|
|
search_times=1):
|
2022-05-14 21:37:31 +08:00
|
|
|
best_res = 0.
|
|
|
|
best = search_list[0]
|
|
|
|
all_result = {}
|
|
|
|
for search_i in search_list:
|
|
|
|
program = base_program.copy()
|
|
|
|
for v in config_replace_value:
|
|
|
|
program += ["-o", "{}={}".format(v, search_i)]
|
2022-05-15 03:28:58 +08:00
|
|
|
if v == "Arch.name":
|
|
|
|
model_name = search_i
|
2022-05-17 11:29:26 +08:00
|
|
|
res_list = []
|
|
|
|
for j in range(search_times):
|
2022-06-07 17:25:22 +08:00
|
|
|
output_dir = "{}/{}_{}_{}".format(base_output_dir, search_key,
|
|
|
|
search_i, j).replace(".", "_")
|
2022-05-17 11:29:26 +08:00
|
|
|
program += ["-o", "Global.output_dir={}".format(output_dir)]
|
|
|
|
process = subprocess.Popen(program)
|
|
|
|
process.communicate()
|
|
|
|
res = get_result("{}/{}".format(output_dir, model_name))
|
|
|
|
res_list.append(res)
|
|
|
|
all_result[str(search_i)] = res_list
|
|
|
|
|
|
|
|
if np.mean(res_list) > best_res:
|
2022-05-14 21:37:31 +08:00
|
|
|
best = search_i
|
2022-05-17 11:29:26 +08:00
|
|
|
best_res = np.mean(res_list)
|
2022-05-14 21:37:31 +08:00
|
|
|
all_result["best"] = best
|
|
|
|
return all_result
|
|
|
|
|
|
|
|
|
|
|
|
def search_strategy():
|
|
|
|
args = config.parse_args()
|
2022-06-07 17:25:22 +08:00
|
|
|
configs = config.get_config(
|
|
|
|
args.config, overrides=args.override, show=False)
|
2022-05-14 21:37:31 +08:00
|
|
|
base_config_file = configs["base_config_file"]
|
2022-06-09 14:52:50 +08:00
|
|
|
distill_config_file = configs.get("distill_config_file", None)
|
2022-05-15 03:28:58 +08:00
|
|
|
model_name = config.get_config(base_config_file)["Arch"]["name"]
|
2022-05-14 21:37:31 +08:00
|
|
|
gpus = configs["gpus"]
|
2022-05-15 03:28:58 +08:00
|
|
|
gpus = ",".join([str(i) for i in gpus])
|
2022-06-07 17:25:22 +08:00
|
|
|
base_program = [
|
|
|
|
"python3.7", "-m", "paddle.distributed.launch",
|
|
|
|
"--gpus={}".format(gpus), "tools/train.py", "-c", base_config_file
|
|
|
|
]
|
2022-05-14 21:37:31 +08:00
|
|
|
base_output_dir = configs["output_dir"]
|
2022-05-17 11:29:26 +08:00
|
|
|
search_times = configs["search_times"]
|
2022-05-14 21:37:31 +08:00
|
|
|
search_dict = configs.get("search_dict")
|
|
|
|
all_results = {}
|
2022-05-16 14:29:52 +08:00
|
|
|
for search_i in search_dict:
|
|
|
|
search_key = search_i["search_key"]
|
|
|
|
search_values = search_i["search_values"]
|
|
|
|
replace_config = search_i["replace_config"]
|
2022-05-17 11:29:26 +08:00
|
|
|
res = search_train(search_values, base_program, base_output_dir,
|
2022-06-07 17:25:22 +08:00
|
|
|
search_key, replace_config, model_name,
|
|
|
|
search_times)
|
2022-05-14 21:37:31 +08:00
|
|
|
all_results[search_key] = res
|
|
|
|
best = res.get("best")
|
|
|
|
for v in replace_config:
|
|
|
|
base_program += ["-o", "{}={}".format(v, best)]
|
|
|
|
|
|
|
|
teacher_configs = configs.get("teacher", None)
|
2022-06-07 17:25:22 +08:00
|
|
|
if teacher_configs is None:
|
|
|
|
print(all_results, base_program)
|
|
|
|
return
|
|
|
|
|
|
|
|
algo = teacher_configs.get("algorithm", "skl-ugi")
|
|
|
|
supported_list = ["skl-ugi", "udml"]
|
|
|
|
assert algo in supported_list, f"algorithm must be in {supported_list} but got {algo}"
|
|
|
|
if algo == "skl-ugi":
|
2022-05-14 21:37:31 +08:00
|
|
|
teacher_program = base_program.copy()
|
|
|
|
# remove incompatible keys
|
|
|
|
teacher_rm_keys = teacher_configs["rm_keys"]
|
|
|
|
rm_indices = []
|
|
|
|
for rm_k in teacher_rm_keys:
|
2022-05-15 03:28:58 +08:00
|
|
|
for ind, ki in enumerate(base_program):
|
2022-06-07 17:25:22 +08:00
|
|
|
if rm_k in ki:
|
|
|
|
rm_indices.append(ind)
|
2022-05-15 03:28:58 +08:00
|
|
|
for rm_index in rm_indices[::-1]:
|
2022-05-14 21:37:31 +08:00
|
|
|
teacher_program.pop(rm_index)
|
2022-06-07 17:25:22 +08:00
|
|
|
teacher_program.pop(rm_index - 1)
|
2022-05-15 03:28:58 +08:00
|
|
|
replace_config = ["Arch.name"]
|
2022-05-14 21:37:31 +08:00
|
|
|
teacher_list = teacher_configs["search_values"]
|
2022-06-07 17:25:22 +08:00
|
|
|
res = search_train(teacher_list, teacher_program, base_output_dir,
|
|
|
|
"teacher", replace_config, model_name)
|
2022-05-14 21:37:31 +08:00
|
|
|
all_results["teacher"] = res
|
|
|
|
best = res.get("best")
|
2022-06-07 17:25:22 +08:00
|
|
|
t_pretrained = "{}/{}_{}_0/{}/best_model".format(base_output_dir,
|
|
|
|
"teacher", best, best)
|
|
|
|
base_program += [
|
|
|
|
"-o", "Arch.models.0.Teacher.name={}".format(best), "-o",
|
|
|
|
"Arch.models.0.Teacher.pretrained={}".format(t_pretrained)
|
|
|
|
]
|
|
|
|
elif algo == "udml":
|
|
|
|
if "lr_mult_list" in all_results:
|
|
|
|
base_program += [
|
|
|
|
"-o", "Arch.models.0.Teacher.lr_mult_list={}".format(
|
|
|
|
all_results["lr_mult_list"]["best"])
|
|
|
|
]
|
|
|
|
|
2022-05-14 21:37:31 +08:00
|
|
|
output_dir = "{}/search_res".format(base_output_dir)
|
|
|
|
base_program += ["-o", "Global.output_dir={}".format(output_dir)]
|
2022-05-15 03:28:58 +08:00
|
|
|
final_replace = configs.get('final_replace')
|
|
|
|
for i in range(len(base_program)):
|
2022-06-07 17:25:22 +08:00
|
|
|
base_program[i] = base_program[i].replace(base_config_file,
|
|
|
|
distill_config_file)
|
|
|
|
for k in final_replace:
|
|
|
|
v = final_replace[k]
|
|
|
|
base_program[i] = base_program[i].replace(k, v)
|
2022-05-15 03:28:58 +08:00
|
|
|
|
2022-05-16 01:25:56 +08:00
|
|
|
process = subprocess.Popen(base_program)
|
|
|
|
process.communicate()
|
2022-05-16 14:29:52 +08:00
|
|
|
print(all_results, base_program)
|
2022-05-14 21:37:31 +08:00
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
search_strategy()
|