PaddleClas/ppcls/arch/backbone/legendary_models/inception_v3.py

560 lines
17 KiB
Python
Raw Normal View History

2021-05-28 16:20:06 +08:00
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
2022-04-29 13:58:26 +08:00
# reference: https://arxiv.org/abs/1512.00567v3
2021-05-28 16:20:06 +08:00
from __future__ import absolute_import, division, print_function
2021-05-31 16:01:02 +08:00
import math
import paddle
from paddle import ParamAttr
import paddle.nn as nn
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
from paddle.nn.initializer import Uniform
2022-08-17 22:34:06 +08:00
from ..base.theseus_layer import TheseusLayer
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
2021-05-28 16:20:06 +08:00
MODEL_URLS = {
2021-05-31 16:01:02 +08:00
"InceptionV3":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/InceptionV3_pretrained.pdparams"
2021-05-28 16:20:06 +08:00
}
MODEL_STAGES_PATTERN = {
"InceptionV3": [
"inception_block_list[2]", "inception_block_list[3]",
"inception_block_list[7]", "inception_block_list[8]",
"inception_block_list[10]"
]
}
2021-05-28 16:20:06 +08:00
__all__ = MODEL_URLS.keys()
'''
InceptionV3 config: dict.
key: inception blocks of InceptionV3.
values: conv num in different blocks.
'''
NET_CONFIG = {
2021-05-31 16:01:02 +08:00
"inception_a": [[192, 256, 288], [32, 64, 64]],
"inception_b": [288],
"inception_c": [[768, 768, 768, 768], [128, 160, 160, 192]],
"inception_d": [768],
"inception_e": [1280, 2048]
}
2021-05-31 16:01:02 +08:00
class ConvBNLayer(TheseusLayer):
def __init__(self,
num_channels,
num_filters,
filter_size,
stride=1,
padding=0,
groups=1,
act="relu"):
2021-05-31 16:01:02 +08:00
super().__init__()
2021-05-28 16:20:06 +08:00
self.act = act
self.conv = Conv2D(
in_channels=num_channels,
out_channels=num_filters,
kernel_size=filter_size,
stride=stride,
padding=padding,
groups=groups,
bias_attr=False)
2021-05-31 16:01:02 +08:00
self.bn = BatchNorm(num_filters)
2021-05-28 16:20:06 +08:00
self.relu = nn.ReLU()
2021-05-28 16:20:06 +08:00
def forward(self, x):
x = self.conv(x)
2021-05-31 16:01:02 +08:00
x = self.bn(x)
2021-05-28 16:20:06 +08:00
if self.act:
x = self.relu(x)
return x
2021-05-31 16:01:02 +08:00
class InceptionStem(TheseusLayer):
def __init__(self):
2021-05-31 16:01:02 +08:00
super().__init__()
self.conv_1a_3x3 = ConvBNLayer(
num_channels=3,
num_filters=32,
filter_size=3,
stride=2,
act="relu")
self.conv_2a_3x3 = ConvBNLayer(
num_channels=32,
num_filters=32,
filter_size=3,
stride=1,
act="relu")
self.conv_2b_3x3 = ConvBNLayer(
num_channels=32,
num_filters=64,
filter_size=3,
padding=1,
act="relu")
self.max_pool = MaxPool2D(kernel_size=3, stride=2, padding=0)
self.conv_3b_1x1 = ConvBNLayer(
num_channels=64, num_filters=80, filter_size=1, act="relu")
self.conv_4a_3x3 = ConvBNLayer(
num_channels=80, num_filters=192, filter_size=3, act="relu")
def forward(self, x):
2021-05-28 16:20:06 +08:00
x = self.conv_1a_3x3(x)
x = self.conv_2a_3x3(x)
x = self.conv_2b_3x3(x)
2021-05-31 16:01:02 +08:00
x = self.max_pool(x)
2021-05-28 16:20:06 +08:00
x = self.conv_3b_1x1(x)
x = self.conv_4a_3x3(x)
2021-05-31 16:01:02 +08:00
x = self.max_pool(x)
2021-05-28 16:20:06 +08:00
return x
2021-05-31 16:01:02 +08:00
class InceptionA(TheseusLayer):
def __init__(self, num_channels, pool_features):
2021-05-31 16:01:02 +08:00
super().__init__()
self.branch1x1 = ConvBNLayer(
num_channels=num_channels,
num_filters=64,
filter_size=1,
act="relu")
self.branch5x5_1 = ConvBNLayer(
num_channels=num_channels,
num_filters=48,
filter_size=1,
act="relu")
self.branch5x5_2 = ConvBNLayer(
num_channels=48,
num_filters=64,
filter_size=5,
padding=2,
act="relu")
self.branch3x3dbl_1 = ConvBNLayer(
num_channels=num_channels,
num_filters=64,
filter_size=1,
act="relu")
self.branch3x3dbl_2 = ConvBNLayer(
num_channels=64,
num_filters=96,
filter_size=3,
padding=1,
act="relu")
self.branch3x3dbl_3 = ConvBNLayer(
num_channels=96,
num_filters=96,
filter_size=3,
padding=1,
act="relu")
self.branch_pool = AvgPool2D(
kernel_size=3, stride=1, padding=1, exclusive=False)
self.branch_pool_conv = ConvBNLayer(
num_channels=num_channels,
num_filters=pool_features,
filter_size=1,
act="relu")
def forward(self, x):
branch1x1 = self.branch1x1(x)
branch5x5 = self.branch5x5_1(x)
branch5x5 = self.branch5x5_2(branch5x5)
branch3x3dbl = self.branch3x3dbl_1(x)
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)
branch_pool = self.branch_pool(x)
branch_pool = self.branch_pool_conv(branch_pool)
2021-05-31 16:01:02 +08:00
x = paddle.concat(
[branch1x1, branch5x5, branch3x3dbl, branch_pool], axis=1)
2021-05-28 16:20:06 +08:00
return x
2021-05-31 16:01:02 +08:00
class InceptionB(TheseusLayer):
def __init__(self, num_channels):
2021-05-31 16:01:02 +08:00
super().__init__()
self.branch3x3 = ConvBNLayer(
num_channels=num_channels,
num_filters=384,
filter_size=3,
stride=2,
act="relu")
self.branch3x3dbl_1 = ConvBNLayer(
num_channels=num_channels,
num_filters=64,
filter_size=1,
act="relu")
self.branch3x3dbl_2 = ConvBNLayer(
num_channels=64,
num_filters=96,
filter_size=3,
padding=1,
act="relu")
self.branch3x3dbl_3 = ConvBNLayer(
num_channels=96,
num_filters=96,
filter_size=3,
stride=2,
act="relu")
self.branch_pool = MaxPool2D(kernel_size=3, stride=2)
2021-05-31 16:01:02 +08:00
def forward(self, x):
branch3x3 = self.branch3x3(x)
branch3x3dbl = self.branch3x3dbl_1(x)
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)
branch_pool = self.branch_pool(x)
2021-05-28 16:20:06 +08:00
x = paddle.concat([branch3x3, branch3x3dbl, branch_pool], axis=1)
2021-05-28 16:20:06 +08:00
return x
2021-05-31 16:01:02 +08:00
class InceptionC(TheseusLayer):
def __init__(self, num_channels, channels_7x7):
2021-05-31 16:01:02 +08:00
super().__init__()
self.branch1x1 = ConvBNLayer(
num_channels=num_channels,
num_filters=192,
filter_size=1,
act="relu")
self.branch7x7_1 = ConvBNLayer(
num_channels=num_channels,
num_filters=channels_7x7,
filter_size=1,
stride=1,
act="relu")
self.branch7x7_2 = ConvBNLayer(
num_channels=channels_7x7,
num_filters=channels_7x7,
filter_size=(1, 7),
stride=1,
padding=(0, 3),
act="relu")
self.branch7x7_3 = ConvBNLayer(
num_channels=channels_7x7,
num_filters=192,
filter_size=(7, 1),
stride=1,
padding=(3, 0),
act="relu")
self.branch7x7dbl_1 = ConvBNLayer(
num_channels=num_channels,
num_filters=channels_7x7,
filter_size=1,
act="relu")
self.branch7x7dbl_2 = ConvBNLayer(
num_channels=channels_7x7,
num_filters=channels_7x7,
filter_size=(7, 1),
padding=(3, 0),
act="relu")
self.branch7x7dbl_3 = ConvBNLayer(
num_channels=channels_7x7,
num_filters=channels_7x7,
filter_size=(1, 7),
padding=(0, 3),
act="relu")
self.branch7x7dbl_4 = ConvBNLayer(
num_channels=channels_7x7,
num_filters=channels_7x7,
filter_size=(7, 1),
padding=(3, 0),
act="relu")
self.branch7x7dbl_5 = ConvBNLayer(
num_channels=channels_7x7,
num_filters=192,
filter_size=(1, 7),
padding=(0, 3),
act="relu")
self.branch_pool = AvgPool2D(
kernel_size=3, stride=1, padding=1, exclusive=False)
self.branch_pool_conv = ConvBNLayer(
num_channels=num_channels,
num_filters=192,
filter_size=1,
act="relu")
def forward(self, x):
branch1x1 = self.branch1x1(x)
branch7x7 = self.branch7x7_1(x)
branch7x7 = self.branch7x7_2(branch7x7)
branch7x7 = self.branch7x7_3(branch7x7)
branch7x7dbl = self.branch7x7dbl_1(x)
branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl)
branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl)
branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl)
branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl)
branch_pool = self.branch_pool(x)
branch_pool = self.branch_pool_conv(branch_pool)
2021-05-31 16:01:02 +08:00
x = paddle.concat(
[branch1x1, branch7x7, branch7x7dbl, branch_pool], axis=1)
2021-05-28 16:20:06 +08:00
return x
2021-05-31 16:01:02 +08:00
class InceptionD(TheseusLayer):
def __init__(self, num_channels):
2021-05-31 16:01:02 +08:00
super().__init__()
self.branch3x3_1 = ConvBNLayer(
num_channels=num_channels,
num_filters=192,
filter_size=1,
act="relu")
self.branch3x3_2 = ConvBNLayer(
num_channels=192,
num_filters=320,
filter_size=3,
stride=2,
act="relu")
self.branch7x7x3_1 = ConvBNLayer(
num_channels=num_channels,
num_filters=192,
filter_size=1,
act="relu")
self.branch7x7x3_2 = ConvBNLayer(
num_channels=192,
num_filters=192,
filter_size=(1, 7),
padding=(0, 3),
act="relu")
self.branch7x7x3_3 = ConvBNLayer(
num_channels=192,
num_filters=192,
filter_size=(7, 1),
padding=(3, 0),
act="relu")
self.branch7x7x3_4 = ConvBNLayer(
num_channels=192,
num_filters=192,
filter_size=3,
stride=2,
act="relu")
self.branch_pool = MaxPool2D(kernel_size=3, stride=2)
def forward(self, x):
branch3x3 = self.branch3x3_1(x)
branch3x3 = self.branch3x3_2(branch3x3)
branch7x7x3 = self.branch7x7x3_1(x)
branch7x7x3 = self.branch7x7x3_2(branch7x7x3)
branch7x7x3 = self.branch7x7x3_3(branch7x7x3)
branch7x7x3 = self.branch7x7x3_4(branch7x7x3)
branch_pool = self.branch_pool(x)
2021-05-31 16:01:02 +08:00
2021-05-28 16:20:06 +08:00
x = paddle.concat([branch3x3, branch7x7x3, branch_pool], axis=1)
return x
2021-05-31 16:01:02 +08:00
class InceptionE(TheseusLayer):
def __init__(self, num_channels):
2021-05-31 16:01:02 +08:00
super().__init__()
self.branch1x1 = ConvBNLayer(
num_channels=num_channels,
num_filters=320,
filter_size=1,
act="relu")
self.branch3x3_1 = ConvBNLayer(
num_channels=num_channels,
num_filters=384,
filter_size=1,
act="relu")
self.branch3x3_2a = ConvBNLayer(
num_channels=384,
num_filters=384,
filter_size=(1, 3),
padding=(0, 1),
act="relu")
self.branch3x3_2b = ConvBNLayer(
num_channels=384,
num_filters=384,
filter_size=(3, 1),
padding=(1, 0),
act="relu")
self.branch3x3dbl_1 = ConvBNLayer(
num_channels=num_channels,
num_filters=448,
filter_size=1,
act="relu")
self.branch3x3dbl_2 = ConvBNLayer(
num_channels=448,
num_filters=384,
filter_size=3,
padding=1,
act="relu")
self.branch3x3dbl_3a = ConvBNLayer(
num_channels=384,
num_filters=384,
filter_size=(1, 3),
padding=(0, 1),
act="relu")
self.branch3x3dbl_3b = ConvBNLayer(
num_channels=384,
num_filters=384,
filter_size=(3, 1),
padding=(1, 0),
act="relu")
self.branch_pool = AvgPool2D(
kernel_size=3, stride=1, padding=1, exclusive=False)
self.branch_pool_conv = ConvBNLayer(
num_channels=num_channels,
num_filters=192,
filter_size=1,
act="relu")
def forward(self, x):
branch1x1 = self.branch1x1(x)
branch3x3 = self.branch3x3_1(x)
branch3x3 = [
self.branch3x3_2a(branch3x3),
self.branch3x3_2b(branch3x3),
]
branch3x3 = paddle.concat(branch3x3, axis=1)
branch3x3dbl = self.branch3x3dbl_1(x)
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
branch3x3dbl = [
self.branch3x3dbl_3a(branch3x3dbl),
self.branch3x3dbl_3b(branch3x3dbl),
]
branch3x3dbl = paddle.concat(branch3x3dbl, axis=1)
branch_pool = self.branch_pool(x)
branch_pool = self.branch_pool_conv(branch_pool)
2021-05-31 16:01:02 +08:00
x = paddle.concat(
[branch1x1, branch3x3, branch3x3dbl, branch_pool], axis=1)
return x
class Inception_V3(TheseusLayer):
2021-05-28 16:20:06 +08:00
"""
Inception_V3
Args:
config: dict. config of Inception_V3.
class_num: int=1000. The number of classes.
pretrained: (True or False) or path of pretrained_model. Whether to load the pretrained model.
Returns:
model: nn.Layer. Specific Inception_V3 model depends on args.
"""
2021-05-31 16:01:02 +08:00
def __init__(self,
config,
stages_pattern,
class_num=1000,
return_patterns=None,
2022-01-10 10:39:18 +08:00
return_stages=None):
2021-05-31 16:01:02 +08:00
super().__init__()
self.inception_a_list = config["inception_a"]
self.inception_c_list = config["inception_c"]
self.inception_b_list = config["inception_b"]
self.inception_d_list = config["inception_d"]
self.inception_e_list = config["inception_e"]
2021-05-28 16:20:06 +08:00
self.inception_stem = InceptionStem()
self.inception_block_list = nn.LayerList()
for i in range(len(self.inception_a_list[0])):
2021-05-31 16:01:02 +08:00
inception_a = InceptionA(self.inception_a_list[0][i],
self.inception_a_list[1][i])
self.inception_block_list.append(inception_a)
for i in range(len(self.inception_b_list)):
inception_b = InceptionB(self.inception_b_list[i])
self.inception_block_list.append(inception_b)
for i in range(len(self.inception_c_list[0])):
2021-05-31 16:01:02 +08:00
inception_c = InceptionC(self.inception_c_list[0][i],
self.inception_c_list[1][i])
self.inception_block_list.append(inception_c)
for i in range(len(self.inception_d_list)):
inception_d = InceptionD(self.inception_d_list[i])
self.inception_block_list.append(inception_d)
for i in range(len(self.inception_e_list)):
inception_e = InceptionE(self.inception_e_list[i])
self.inception_block_list.append(inception_e)
2021-05-31 16:01:02 +08:00
2021-05-28 18:24:18 +08:00
self.avg_pool = AdaptiveAvgPool2D(1)
self.dropout = Dropout(p=0.2, mode="downscale_in_infer")
stdv = 1.0 / math.sqrt(2048 * 1.0)
2021-05-28 18:24:18 +08:00
self.fc = Linear(
2048,
class_num,
2021-05-31 16:01:02 +08:00
weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv)),
bias_attr=ParamAttr())
super().init_res(
stages_pattern,
return_patterns=return_patterns,
return_stages=return_stages)
def forward(self, x):
2021-05-28 16:20:06 +08:00
x = self.inception_stem(x)
for inception_block in self.inception_block_list:
2021-05-31 16:01:02 +08:00
x = inception_block(x)
2021-05-28 18:24:18 +08:00
x = self.avg_pool(x)
2021-05-28 16:20:06 +08:00
x = paddle.reshape(x, shape=[-1, 2048])
2021-05-28 18:24:18 +08:00
x = self.dropout(x)
x = self.fc(x)
2021-05-28 16:20:06 +08:00
return x
2021-05-27 14:42:45 +08:00
2021-05-31 16:01:02 +08:00
def _load_pretrained(pretrained, model, model_url, use_ssld):
if pretrained is False:
pass
elif pretrained is True:
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
elif isinstance(pretrained, str):
load_dygraph_pretrain(model, pretrained)
else:
raise RuntimeError(
"pretrained type is not available. Please use `string` or `boolean` type."
)
def InceptionV3(pretrained=False, use_ssld=False, **kwargs):
2021-05-27 14:42:45 +08:00
"""
InceptionV3
Args:
2021-05-31 16:01:02 +08:00
pretrained: bool=false or str. if `true` load pretrained parameters, `false` otherwise.
if str, means the path of the pretrained model.
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
2021-05-27 14:42:45 +08:00
Returns:
2022-01-10 10:39:18 +08:00
model: nn.Layer. Specific `InceptionV3` model
2021-05-27 14:42:45 +08:00
"""
model = Inception_V3(
NET_CONFIG,
stages_pattern=MODEL_STAGES_PATTERN["InceptionV3"],
**kwargs)
2021-05-31 16:01:02 +08:00
_load_pretrained(pretrained, model, MODEL_URLS["InceptionV3"], use_ssld)
2021-05-27 14:42:45 +08:00
return model