mirror of
https://github.com/PaddlePaddle/PaddleClas.git
synced 2025-06-03 21:55:06 +08:00
51 lines
1.9 KiB
Python
51 lines
1.9 KiB
Python
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import paddle
|
||
|
import math
|
||
|
import paddle.nn as nn
|
||
|
|
||
|
class CosMargin(paddle.nn.Layer):
|
||
|
def __init__(self, embedding_size,
|
||
|
class_num,
|
||
|
margin=0.35,
|
||
|
scale=64.0):
|
||
|
super(CosMargin, self).__init__()
|
||
|
self.scale = scale
|
||
|
self.margin = margin
|
||
|
self.embedding_size = embedding_size
|
||
|
self.class_num = class_num
|
||
|
|
||
|
weight_attr = paddle.ParamAttr(initializer = paddle.nn.initializer.XavierNormal())
|
||
|
self.fc = nn.Linear(self.embedding_size, self.class_num, weight_attr=weight_attr, bias_attr=False)
|
||
|
|
||
|
def forward(self, input, label):
|
||
|
label.stop_gradient = True
|
||
|
|
||
|
input_norm = paddle.sqrt(paddle.sum(paddle.square(input), axis=1, keepdim=True))
|
||
|
input = paddle.divide(input, x_norm)
|
||
|
|
||
|
weight = self.fc.weight
|
||
|
weight_norm = paddle.sqrt(paddle.sum(paddle.square(weight), axis=0, keepdim=True))
|
||
|
weight = paddle.divide(weight, weight_norm)
|
||
|
|
||
|
cos = paddle.matmul(input, weight)
|
||
|
cos_m = cos - self.margin
|
||
|
|
||
|
one_hot = paddle.nn.functional.one_hot(label, self.out_dim)
|
||
|
one_hot = paddle.squeeze(one_hot, axis=[1])
|
||
|
output = paddle.multiply(one_hot, cos_m) + paddle.multiply((1.0 - one_hot), cos)
|
||
|
output = output * self.scale
|
||
|
return output
|