PaddleClas/ppcls/metric/__init__.py

71 lines
2.4 KiB
Python
Raw Normal View History

2021-06-04 22:27:32 +08:00
#copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import copy
from collections import OrderedDict
2022-05-14 17:31:52 +08:00
from .avg_metrics import AvgMetrics
2021-08-23 19:45:44 +08:00
from .metrics import TopkAcc, mAP, mINP, Recallk, Precisionk
from .metrics import DistillationTopkAcc
2021-06-22 09:58:03 +08:00
from .metrics import GoogLeNetTopkAcc
2021-09-26 15:05:13 +08:00
from .metrics import HammingDistance, AccuracyScore
2022-05-11 15:01:26 +08:00
from .metrics import ATTRMetric
2022-05-14 17:31:52 +08:00
from .metrics import TprAtFpr
2021-09-26 15:05:13 +08:00
2022-05-14 17:31:52 +08:00
class CombinedMetrics(AvgMetrics):
2021-06-04 22:27:32 +08:00
def __init__(self, config_list):
super().__init__()
self.metric_func_list = []
assert isinstance(config_list, list), (
'operator config should be a list')
for config in config_list:
assert isinstance(config,
dict) and len(config) == 1, "yaml format error"
metric_name = list(config)[0]
metric_params = config[metric_name]
2021-06-11 10:38:17 +08:00
if metric_params is not None:
2021-09-26 15:05:13 +08:00
self.metric_func_list.append(
eval(metric_name)(**metric_params))
2021-06-11 10:38:17 +08:00
else:
self.metric_func_list.append(eval(metric_name)())
2022-05-16 12:31:26 +08:00
self.reset()
2021-06-04 22:27:32 +08:00
2022-05-14 17:31:52 +08:00
def forward(self, *args, **kwargs):
2021-06-04 22:27:32 +08:00
metric_dict = OrderedDict()
for idx, metric_func in enumerate(self.metric_func_list):
2021-06-04 22:59:46 +08:00
metric_dict.update(metric_func(*args, **kwargs))
2021-06-04 22:27:32 +08:00
return metric_dict
2022-05-14 17:31:52 +08:00
@property
def avg_info(self):
return ", ".join([metric.avg_info for metric in self.metric_func_list])
@property
def avg(self):
return self.metric_func_list[0].avg
2022-05-23 18:27:55 +08:00
def attr_res(self):
return self.metric_func_list[0].attrmeter.res()
2022-05-16 12:31:26 +08:00
def reset(self):
for metric in self.metric_func_list:
if hasattr(metric, "reset"):
metric.reset()
2021-09-26 15:05:13 +08:00
2021-06-04 22:27:32 +08:00
def build_metrics(config):
metrics_list = CombinedMetrics(copy.deepcopy(config))
return metrics_list