PaddleClas/benchmark/run_all.sh

32 lines
1.9 KiB
Bash
Raw Normal View History

2021-09-17 11:14:28 +08:00
# 提供可稳定复现性能的脚本默认在标准docker环境内py37执行 paddlepaddle/paddle:latest-gpu-cuda10.1-cudnn7 paddle=2.1.2 py=37
# 执行目录:需说明
# cd **
# 1 安装该模型需要的依赖 (如需开启优化策略请注明)
# pip install ...
# 2 拷贝该模型需要数据、预训练模型
# 3 批量运行如不方便批量12需放到单个模型中
2021-11-29 14:42:02 +08:00
log_path=${LOG_PATH_INDEX_DIR:-$(pwd)} # LOG_PATH_INDEX_DIR 后续QA设置参数
2021-11-23 18:50:23 +08:00
model_mode_list=(MobileNetV1 MobileNetV2 MobileNetV3_large_x1_0 ShuffleNetV2_x1_0 HRNet_W48_C SwinTransformer_tiny_patch4_window7_224 alt_gvt_base) # benchmark 监控模型列表
#model_mode_list=(MobileNetV1 MobileNetV2 MobileNetV3_large_x1_0 EfficientNetB0 ShuffleNetV2_x1_0 DenseNet121 HRNet_W48_C SwinTransformer_tiny_patch4_window7_224 alt_gvt_base) # 该脚本支持列表
2021-09-17 11:14:28 +08:00
fp_item_list=(fp32)
2021-11-23 20:13:07 +08:00
#bs_list=(32 64 96 128)
2021-09-17 11:14:28 +08:00
for model_mode in ${model_mode_list[@]}; do
for fp_item in ${fp_item_list[@]}; do
2021-11-23 19:22:29 +08:00
if [ ${model_mode} = MobileNetV3_large_x1_0 ] || [ ${model_mode} = ShuffleNetV2_x1_0 ]; then
bs_list=(256)
2021-11-23 20:13:07 +08:00
else
bs_list=(64)
2021-11-23 19:22:29 +08:00
fi
2021-09-17 11:14:28 +08:00
for bs_item in ${bs_list[@]};do
echo "index is speed, 1gpus, begin, ${model_name}"
run_mode=sp
2021-11-23 18:50:23 +08:00
CUDA_VISIBLE_DEVICES=0 bash benchmark/run_benchmark.sh ${run_mode} ${bs_item} ${fp_item} 1 ${model_mode} | tee ${log_path}/clas_${model_mode}_${run_mode}_bs${bs_item}_${fp_item}_1gpus 2>&1 # (5min)
2021-09-17 11:14:28 +08:00
sleep 10
echo "index is speed, 8gpus, run_mode is multi_process, begin, ${model_name}"
run_mode=mp
2021-11-23 18:50:23 +08:00
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 bash benchmark/run_benchmark.sh ${run_mode} ${bs_item} ${fp_item} 1 ${model_mode}| tee ${log_path}/clas_${model_mode}_${run_mode}_bs${bs_item}_${fp_item}_8gpus8p 2>&1
2021-09-17 11:14:28 +08:00
sleep 10
done
done
done