88 lines
2.8 KiB
Python
88 lines
2.8 KiB
Python
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import numpy as np
|
||
|
from PIL import Image
|
||
|
import pdb
|
||
|
|
||
|
# curr
|
||
|
CURR_EPOCH = 0
|
||
|
# epoch for the prob to be the upper limit
|
||
|
NUM_EPOCHS = 240
|
||
|
|
||
|
|
||
|
class GridMask(object):
|
||
|
def __init__(self, d1, d2, rotate=1, ratio=0.5, mode=0, prob=1.):
|
||
|
self.d1 = d1
|
||
|
self.d2 = d2
|
||
|
self.rotate = rotate
|
||
|
self.ratio = ratio
|
||
|
self.mode = mode
|
||
|
self.st_prob = prob
|
||
|
self.prob = prob
|
||
|
self.last_prob = -1
|
||
|
|
||
|
def set_prob(self):
|
||
|
global CURR_EPOCH
|
||
|
global NUM_EPOCHS
|
||
|
self.prob = self.st_prob * min(1, 1.0 * CURR_EPOCH / NUM_EPOCHS)
|
||
|
|
||
|
def __call__(self, img):
|
||
|
self.set_prob()
|
||
|
if abs(self.last_prob - self.prob) > 1e-10:
|
||
|
global CURR_EPOCH
|
||
|
global NUM_EPOCHS
|
||
|
print(
|
||
|
"self.prob is updated, self.prob={}, CURR_EPOCH: {}, NUM_EPOCHS: {}".
|
||
|
format(self.prob, CURR_EPOCH, NUM_EPOCHS))
|
||
|
self.last_prob = self.prob
|
||
|
# print("CURR_EPOCH: {}, NUM_EPOCHS: {}, self.prob is set as: {}".format(CURR_EPOCH, NUM_EPOCHS, self.prob) )
|
||
|
if np.random.rand() > self.prob:
|
||
|
return img
|
||
|
_, h, w = img.shape
|
||
|
hh = int(1.5 * h)
|
||
|
ww = int(1.5 * w)
|
||
|
d = np.random.randint(self.d1, self.d2)
|
||
|
#d = self.d
|
||
|
self.l = int(d * self.ratio + 0.5)
|
||
|
mask = np.ones((hh, ww), np.float32)
|
||
|
st_h = np.random.randint(d)
|
||
|
st_w = np.random.randint(d)
|
||
|
for i in range(-1, hh // d + 1):
|
||
|
s = d * i + st_h
|
||
|
t = s + self.l
|
||
|
s = max(min(s, hh), 0)
|
||
|
t = max(min(t, hh), 0)
|
||
|
mask[s:t, :] *= 0
|
||
|
for i in range(-1, ww // d + 1):
|
||
|
s = d * i + st_w
|
||
|
t = s + self.l
|
||
|
s = max(min(s, ww), 0)
|
||
|
t = max(min(t, ww), 0)
|
||
|
mask[:, s:t] *= 0
|
||
|
r = np.random.randint(self.rotate)
|
||
|
mask = Image.fromarray(np.uint8(mask))
|
||
|
mask = mask.rotate(r)
|
||
|
mask = np.asarray(mask)
|
||
|
mask = mask[(hh - h) // 2:(hh - h) // 2 + h, (ww - w) // 2:(ww - w) //
|
||
|
2 + w]
|
||
|
|
||
|
if self.mode == 1:
|
||
|
mask = 1 - mask
|
||
|
|
||
|
mask = np.expand_dims(mask, axis=0)
|
||
|
img = (img * mask).astype(img.dtype)
|
||
|
|
||
|
return img
|