PaddleClas/deploy/utils/predictor.py

96 lines
3.7 KiB
Python
Raw Normal View History

2021-06-04 17:28:37 +08:00
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
2022-03-02 18:00:13 +08:00
import platform
2021-06-04 17:28:37 +08:00
import os
import argparse
import base64
import shutil
import cv2
import numpy as np
from paddle.inference import Config
from paddle.inference import create_predictor
class Predictor(object):
2021-06-04 23:23:23 +08:00
def __init__(self, args, inference_model_dir=None):
2021-06-04 17:28:37 +08:00
# HALF precission predict only work when using tensorrt
if args.use_fp16 is True:
assert args.use_tensorrt is True
self.args = args
if self.args.get("use_onnx", False):
self.predictor, self.config = self.create_onnx_predictor(
args, inference_model_dir)
else:
self.predictor, self.config = self.create_paddle_predictor(
args, inference_model_dir)
2021-06-04 17:28:37 +08:00
2021-06-04 23:23:23 +08:00
def predict(self, image):
raise NotImplementedError
2021-06-04 17:28:37 +08:00
2021-06-04 23:23:23 +08:00
def create_paddle_predictor(self, args, inference_model_dir=None):
if inference_model_dir is None:
inference_model_dir = args.inference_model_dir
params_file = os.path.join(inference_model_dir, "inference.pdiparams")
model_file = os.path.join(inference_model_dir, "inference.pdmodel")
2021-06-04 17:28:37 +08:00
config = Config(model_file, params_file)
if args.use_gpu:
config.enable_use_gpu(args.gpu_mem, 0)
else:
config.disable_gpu()
if args.enable_mkldnn:
2022-03-02 18:00:13 +08:00
# there is no set_mkldnn_cache_capatity() on macOS
if platform.system() != "Darwin":
# cache 10 different shapes for mkldnn to avoid memory leak
config.set_mkldnn_cache_capacity(10)
2021-06-04 17:28:37 +08:00
config.enable_mkldnn()
config.set_cpu_math_library_num_threads(args.cpu_num_threads)
if args.enable_profile:
config.enable_profile()
config.disable_glog_info()
config.switch_ir_optim(args.ir_optim) # default true
if args.use_tensorrt:
config.enable_tensorrt_engine(
precision_mode=Config.Precision.Half
if args.use_fp16 else Config.Precision.Float32,
2021-08-03 11:42:45 +08:00
max_batch_size=args.batch_size,
2021-11-25 20:36:53 +08:00
workspace_size=1 << 30,
2021-08-03 11:42:45 +08:00
min_subgraph_size=30)
2021-06-04 17:28:37 +08:00
config.enable_memory_optim()
# use zero copy
config.switch_use_feed_fetch_ops(False)
predictor = create_predictor(config)
2021-07-20 20:19:55 +08:00
return predictor, config
def create_onnx_predictor(self, args, inference_model_dir=None):
import onnxruntime as ort
if inference_model_dir is None:
inference_model_dir = args.inference_model_dir
model_file = os.path.join(inference_model_dir, "inference.onnx")
config = ort.SessionOptions()
if args.use_gpu:
raise ValueError(
"onnx inference now only supports cpu! please specify use_gpu false."
)
else:
config.intra_op_num_threads = args.cpu_num_threads
if args.ir_optim:
config.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
predictor = ort.InferenceSession(model_file, sess_options=config)
return predictor, config