PaddleClas/ppcls/modeling/architectures/se_resnext.py

318 lines
11 KiB
Python
Raw Normal View History

2020-09-18 00:08:06 +08:00
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
2020-04-09 02:16:30 +08:00
#
2020-09-18 00:08:06 +08:00
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
2020-04-09 02:16:30 +08:00
#
# http://www.apache.org/licenses/LICENSE-2.0
#
2020-09-18 00:08:06 +08:00
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
2020-04-09 02:16:30 +08:00
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
2020-09-18 00:08:06 +08:00
import numpy as np
import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
2020-09-18 00:08:06 +08:00
from paddle.nn.initializer import Uniform
2020-04-09 02:16:30 +08:00
import math
2020-09-18 00:08:06 +08:00
__all__ = ["SE_ResNeXt50_32x4d", "SE_ResNeXt101_32x4d", "SE_ResNeXt152_64x4d"]
2020-04-09 02:16:30 +08:00
2020-09-18 00:08:06 +08:00
class ConvBNLayer(nn.Layer):
def __init__(self,
num_channels,
num_filters,
filter_size,
stride=1,
groups=1,
act=None,
name=None,
data_format='NCHW'):
2020-09-18 00:08:06 +08:00
super(ConvBNLayer, self).__init__()
2020-04-09 02:16:30 +08:00
self._conv = Conv2D(
2020-09-18 00:08:06 +08:00
in_channels=num_channels,
out_channels=num_filters,
kernel_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
weight_attr=ParamAttr(name=name + "_weights"),
bias_attr=False,
data_format=data_format)
2020-09-18 00:08:06 +08:00
bn_name = name + '_bn'
self._batch_norm = BatchNorm(
num_filters,
act=act,
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance',
data_layout=data_format)
2020-09-18 00:08:06 +08:00
def forward(self, inputs):
y = self._conv(inputs)
y = self._batch_norm(y)
return y
class BottleneckBlock(nn.Layer):
def __init__(self,
num_channels,
num_filters,
stride,
cardinality,
reduction_ratio,
shortcut=True,
if_first=False,
name=None,
data_format="NCHW"):
2020-09-18 00:08:06 +08:00
super(BottleneckBlock, self).__init__()
self.conv0 = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters,
filter_size=1,
act='relu',
name='conv' + name + '_x1',
data_format=data_format)
2020-09-18 00:08:06 +08:00
self.conv1 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters,
filter_size=3,
groups=cardinality,
stride=stride,
act='relu',
name='conv' + name + '_x2',
data_format=data_format)
2020-09-18 00:08:06 +08:00
self.conv2 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters * 2 if cardinality == 32 else num_filters,
filter_size=1,
act=None,
name='conv' + name + '_x3',
data_format=data_format)
2020-09-18 00:08:06 +08:00
self.scale = SELayer(
num_channels=num_filters * 2 if cardinality == 32 else num_filters,
num_filters=num_filters * 2 if cardinality == 32 else num_filters,
reduction_ratio=reduction_ratio,
name='fc' + name,
data_format=data_format)
2020-09-18 00:08:06 +08:00
if not shortcut:
self.short = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters * 2
if cardinality == 32 else num_filters,
filter_size=1,
stride=stride,
name='conv' + name + '_prj',
data_format=data_format)
2020-09-18 00:08:06 +08:00
self.shortcut = shortcut
def forward(self, inputs):
y = self.conv0(inputs)
conv1 = self.conv1(y)
conv2 = self.conv2(conv1)
scale = self.scale(conv2)
if self.shortcut:
short = inputs
else:
short = self.short(inputs)
y = paddle.add(x=short, y=scale)
y = F.relu(y)
2020-09-18 00:08:06 +08:00
return y
class SELayer(nn.Layer):
def __init__(self, num_channels, num_filters, reduction_ratio, name=None, data_format="NCHW"):
2020-09-18 00:08:06 +08:00
super(SELayer, self).__init__()
self.data_format = data_format
self.pool2d_gap = AdaptiveAvgPool2D(1, data_format=self.data_format)
2020-09-18 00:08:06 +08:00
self._num_channels = num_channels
med_ch = int(num_channels / reduction_ratio)
stdv = 1.0 / math.sqrt(num_channels * 1.0)
self.squeeze = Linear(
num_channels,
med_ch,
weight_attr=ParamAttr(
initializer=Uniform(-stdv, stdv), name=name + "_sqz_weights"),
2020-09-18 00:08:06 +08:00
bias_attr=ParamAttr(name=name + '_sqz_offset'))
self.relu = nn.ReLU()
stdv = 1.0 / math.sqrt(med_ch * 1.0)
self.excitation = Linear(
med_ch,
num_filters,
weight_attr=ParamAttr(
initializer=Uniform(-stdv, stdv), name=name + "_exc_weights"),
2020-09-18 00:08:06 +08:00
bias_attr=ParamAttr(name=name + '_exc_offset'))
self.sigmoid = nn.Sigmoid()
2020-09-18 00:08:06 +08:00
def forward(self, input):
pool = self.pool2d_gap(input)
if self.data_format == "NHWC":
pool = paddle.squeeze(pool, axis=[1, 2])
else:
pool = paddle.squeeze(pool, axis=[2, 3])
2020-09-18 00:08:06 +08:00
squeeze = self.squeeze(pool)
squeeze = self.relu(squeeze)
excitation = self.excitation(squeeze)
excitation = self.sigmoid(excitation)
if self.data_format == "NHWC":
excitation = paddle.unsqueeze(excitation, axis=[1, 2])
else:
excitation = paddle.unsqueeze(excitation, axis=[2, 3])
2020-09-18 00:08:06 +08:00
out = input * excitation
return out
class ResNeXt(nn.Layer):
def __init__(self, layers=50, class_dim=1000, cardinality=32, input_image_channel=3, data_format="NCHW"):
2020-09-18 00:08:06 +08:00
super(ResNeXt, self).__init__()
2020-04-09 02:16:30 +08:00
2020-09-18 00:08:06 +08:00
self.layers = layers
self.cardinality = cardinality
self.reduction_ratio = 16
self.data_format = data_format
self.input_image_channel = input_image_channel
2020-04-09 02:16:30 +08:00
supported_layers = [50, 101, 152]
assert layers in supported_layers, \
2020-09-18 00:08:06 +08:00
"supported layers are {} but input layer is {}".format(
supported_layers, layers)
supported_cardinality = [32, 64]
assert cardinality in supported_cardinality, \
"supported cardinality is {} but input cardinality is {}" \
.format(supported_cardinality, cardinality)
2020-04-09 02:16:30 +08:00
if layers == 50:
depth = [3, 4, 6, 3]
elif layers == 101:
depth = [3, 4, 23, 3]
2020-09-18 00:08:06 +08:00
elif layers == 152:
depth = [3, 8, 36, 3]
num_channels = [64, 256, 512, 1024]
num_filters = [128, 256, 512,
1024] if cardinality == 32 else [256, 512, 1024, 2048]
if layers < 152:
self.conv = ConvBNLayer(
num_channels=self.input_image_channel,
2020-04-09 02:16:30 +08:00
num_filters=64,
filter_size=7,
stride=2,
act='relu',
name="conv1",
data_format=self.data_format)
2020-09-18 00:08:06 +08:00
else:
self.conv1_1 = ConvBNLayer(
num_channels=self.input_image_channel,
2020-04-09 02:16:30 +08:00
num_filters=64,
filter_size=3,
stride=2,
act='relu',
name="conv1",
data_format=self.data_format)
2020-09-18 00:08:06 +08:00
self.conv1_2 = ConvBNLayer(
num_channels=64,
2020-04-09 02:16:30 +08:00
num_filters=64,
filter_size=3,
stride=1,
act='relu',
name="conv2",
data_format=self.data_format)
2020-09-18 00:08:06 +08:00
self.conv1_3 = ConvBNLayer(
num_channels=64,
2020-04-09 02:16:30 +08:00
num_filters=128,
filter_size=3,
stride=1,
act='relu',
name="conv3",
data_format=self.data_format)
2020-09-18 00:08:06 +08:00
self.pool2d_max = MaxPool2D(kernel_size=3, stride=2, padding=1, data_format=self.data_format)
2020-09-18 00:08:06 +08:00
self.block_list = []
2020-04-09 02:16:30 +08:00
n = 1 if layers == 50 or layers == 101 else 3
for block in range(len(depth)):
n += 1
2020-09-18 00:08:06 +08:00
shortcut = False
2020-04-09 02:16:30 +08:00
for i in range(depth[block]):
2020-09-18 00:08:06 +08:00
bottleneck_block = self.add_sublayer(
'bb_%d_%d' % (block, i),
BottleneckBlock(
num_channels=num_channels[block] if i == 0 else
num_filters[block] * int(64 // self.cardinality),
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
cardinality=self.cardinality,
reduction_ratio=self.reduction_ratio,
shortcut=shortcut,
if_first=block == 0,
name=str(n) + '_' + str(i + 1),
data_format=self.data_format))
2020-09-18 00:08:06 +08:00
self.block_list.append(bottleneck_block)
shortcut = True
2020-04-09 02:16:30 +08:00
self.pool2d_avg = AdaptiveAvgPool2D(1, data_format=self.data_format)
2020-04-09 02:16:30 +08:00
2020-09-18 00:08:06 +08:00
self.pool2d_avg_channels = num_channels[-1] * 2
2020-04-09 02:16:30 +08:00
2020-09-18 00:08:06 +08:00
stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)
2020-04-09 02:16:30 +08:00
2020-09-18 00:08:06 +08:00
self.out = Linear(
self.pool2d_avg_channels,
class_dim,
weight_attr=ParamAttr(
initializer=Uniform(-stdv, stdv), name="fc6_weights"),
2020-09-18 00:08:06 +08:00
bias_attr=ParamAttr(name="fc6_offset"))
2020-04-09 02:16:30 +08:00
2020-09-18 00:08:06 +08:00
def forward(self, inputs):
with paddle.static.amp.fp16_guard():
if self.data_format == "NHWC":
inputs = paddle.tensor.transpose(inputs, [0, 2, 3, 1])
inputs.stop_gradient = True
if self.layers < 152:
y = self.conv(inputs)
else:
y = self.conv1_1(inputs)
y = self.conv1_2(y)
y = self.conv1_3(y)
y = self.pool2d_max(y)
for i, block in enumerate(self.block_list):
y = block(y)
y = self.pool2d_avg(y)
y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels])
y = self.out(y)
return y
2020-04-09 02:16:30 +08:00
2020-09-18 00:08:06 +08:00
def SE_ResNeXt50_32x4d(**args):
model = ResNeXt(layers=50, cardinality=32, **args)
2020-04-09 02:16:30 +08:00
return model
2020-09-18 00:08:06 +08:00
def SE_ResNeXt101_32x4d(**args):
model = ResNeXt(layers=101, cardinality=32, **args)
2020-04-09 02:16:30 +08:00
return model
2020-09-18 00:08:06 +08:00
def SE_ResNeXt152_64x4d(**args):
model = ResNeXt(layers=152, cardinality=64, **args)
2020-04-09 02:16:30 +08:00
return model