PaddleClas/hubconf.py

636 lines
19 KiB
Python
Raw Normal View History

2021-03-24 10:40:57 +08:00
2021-03-24 16:57:21 +08:00
dependencies = ['paddle', 'numpy']
2021-03-24 10:40:57 +08:00
2021-03-25 13:38:05 +08:00
import paddle
2021-03-24 10:40:57 +08:00
2021-03-25 14:38:31 +08:00
from ppcls.modeling.architectures import alexnet as _alexnet
from ppcls.modeling.architectures import vgg as _vgg
2021-03-25 14:26:52 +08:00
from ppcls.modeling.architectures import resnet as _resnet
2021-03-25 14:48:00 +08:00
from ppcls.modeling.architectures import squeezenet as _squeezenet
from ppcls.modeling.architectures import densenet as _densenet
from ppcls.modeling.architectures import inception_v3 as _inception_v3
from ppcls.modeling.architectures import inception_v4 as _inception_v4
2021-03-25 15:10:17 +08:00
from ppcls.modeling.architectures import googlenet as _googlenet
from ppcls.modeling.architectures import shufflenet_v2 as _shufflenet_v2
from ppcls.modeling.architectures import mobilenet_v1 as _mobilenet_v1
from ppcls.modeling.architectures import mobilenet_v2 as _mobilenet_v2
from ppcls.modeling.architectures import mobilenet_v3 as _mobilenet_v3
from ppcls.modeling.architectures import resnext as _resnext
2021-03-25 14:48:00 +08:00
2021-03-25 14:26:52 +08:00
# _checkpoints = {
# 'ResNet18': 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet18_pretrained.pdparams',
# 'ResNet34': 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet34_pretrained.pdparams',
# }
2021-03-25 13:38:05 +08:00
2021-03-25 14:48:00 +08:00
2021-03-25 14:26:52 +08:00
def _load_pretrained_urls():
'''Load pretrained model parameters url from README.md
'''
import re
2021-03-25 14:48:00 +08:00
import os
2021-03-25 14:26:52 +08:00
from collections import OrderedDict
2021-03-25 14:48:00 +08:00
readme_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'README.md')
with open(readme_path, 'r') as f:
2021-03-25 14:26:52 +08:00
lines = f.readlines()
lines = [lin for lin in lines if lin.strip().startswith('|') and 'Download link' in lin]
urls = OrderedDict()
for lin in lines:
try:
name = re.findall(r'\|(.*?)\|', lin)[0].strip().replace('<br>', '')
url = re.findall(r'\((.*?)\)', lin)[-1].strip()
if name in url:
urls[name] = url
except:
pass
return urls
_checkpoints = _load_pretrained_urls()
2021-03-25 13:38:05 +08:00
2021-03-24 16:37:50 +08:00
2021-03-25 14:38:31 +08:00
def AlexNet(**kwargs):
'''AlexNet
'''
pretrained = kwargs.pop('pretrained', False)
model = _alexnet.AlexNet(**kwargs)
if pretrained:
assert 'AlexNet' in _checkpoints, 'Not provide `AlexNet` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['AlexNet'])
model.set_state_dict(paddle.load(path))
return model
def VGG11(**kwargs):
'''VGG11
'''
pretrained = kwargs.pop('pretrained', False)
model = _vgg.VGG11(**kwargs)
if pretrained:
assert 'VGG11' in _checkpoints, 'Not provide `VGG11` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['VGG11'])
model.set_state_dict(paddle.load(path))
return model
def VGG13(**kwargs):
'''VGG13
'''
pretrained = kwargs.pop('pretrained', False)
model = _vgg.VGG13(**kwargs)
if pretrained:
assert 'VGG13' in _checkpoints, 'Not provide `VGG13` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['VGG13'])
model.set_state_dict(paddle.load(path))
return model
def VGG16(**kwargs):
'''VGG16
'''
pretrained = kwargs.pop('pretrained', False)
model = _vgg.VGG16(**kwargs)
if pretrained:
assert 'VGG16' in _checkpoints, 'Not provide `VGG16` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['VGG16'])
model.set_state_dict(paddle.load(path))
return model
def VGG19(**kwargs):
'''VGG19
'''
pretrained = kwargs.pop('pretrained', False)
model = _vgg.VGG19(**kwargs)
if pretrained:
assert 'VGG19' in _checkpoints, 'Not provide `VGG19` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['VGG19'])
model.set_state_dict(paddle.load(path))
return model
2021-03-24 16:37:50 +08:00
def ResNet18(**kwargs):
'''ResNet18
2021-03-24 10:40:57 +08:00
'''
2021-03-25 13:38:05 +08:00
pretrained = kwargs.pop('pretrained', False)
2021-03-25 14:26:52 +08:00
model = _resnet.ResNet18(**kwargs)
2021-03-25 13:38:05 +08:00
if pretrained:
2021-03-25 14:26:52 +08:00
assert 'ResNet18' in _checkpoints, 'Not provide `ResNet18` pretrained model.'
2021-03-25 13:38:05 +08:00
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['ResNet18'])
model.set_state_dict(paddle.load(path))
2021-03-24 10:40:57 +08:00
return model
2021-03-24 16:37:50 +08:00
def ResNet34(**kwargs):
'''ResNet34
'''
2021-03-25 14:26:52 +08:00
pretrained = kwargs.pop('pretrained', False)
model = _resnet.ResNet34(**kwargs)
if pretrained:
assert 'ResNet34' in _checkpoints, 'Not provide `ResNet34` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['ResNet34'])
model.set_state_dict(paddle.load(path))
2021-03-24 16:37:50 +08:00
2021-03-25 14:26:52 +08:00
return model
2021-03-24 16:37:50 +08:00
2021-03-25 14:38:31 +08:00
def ResNet50(**kwargs):
'''ResNet50
'''
pretrained = kwargs.pop('pretrained', False)
model = _resnet.ResNet50(**kwargs)
if pretrained:
assert 'ResNet50' in _checkpoints, 'Not provide `ResNet50` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['ResNet50'])
model.set_state_dict(paddle.load(path))
return model
def ResNet101(**kwargs):
'''ResNet101
'''
pretrained = kwargs.pop('pretrained', False)
model = _resnet.ResNet101(**kwargs)
if pretrained:
assert 'ResNet101' in _checkpoints, 'Not provide `ResNet101` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['ResNet101'])
model.set_state_dict(paddle.load(path))
return model
def ResNet152(**kwargs):
'''ResNet152
'''
pretrained = kwargs.pop('pretrained', False)
model = _resnet.ResNet152(**kwargs)
if pretrained:
assert 'ResNet152' in _checkpoints, 'Not provide `ResNet152` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['ResNet152'])
model.set_state_dict(paddle.load(path))
return model
2021-03-25 15:10:17 +08:00
def SqueezeNet1_0(**kwargs):
'''SqueezeNet1_0
'''
pretrained = kwargs.pop('pretrained', False)
model = _squeezenet.SqueezeNet1_0(**kwargs)
if pretrained:
assert 'SqueezeNet1_0' in _checkpoints, 'Not provide `SqueezeNet1_0` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['SqueezeNet1_0'])
model.set_state_dict(paddle.load(path))
return model
def SqueezeNet1_1(**kwargs):
'''SqueezeNet1_1
'''
pretrained = kwargs.pop('pretrained', False)
model = _squeezenet.SqueezeNet1_1(**kwargs)
if pretrained:
assert 'SqueezeNet1_1' in _checkpoints, 'Not provide `SqueezeNet1_1` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['SqueezeNet1_1'])
model.set_state_dict(paddle.load(path))
return model
2021-03-25 15:14:28 +08:00
def DenseNet121(**kwargs):
'''DenseNet121
'''
pretrained = kwargs.pop('pretrained', False)
model = _densenet.DenseNet121(**kwargs)
if pretrained:
assert 'DenseNet121' in _checkpoints, 'Not provide `DenseNet121` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['DenseNet121'])
model.set_state_dict(paddle.load(path))
return model
def DenseNet161(**kwargs):
'''DenseNet161
'''
pretrained = kwargs.pop('pretrained', False)
model = _densenet.DenseNet161(**kwargs)
if pretrained:
assert 'DenseNet161' in _checkpoints, 'Not provide `DenseNet161` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['DenseNet161'])
model.set_state_dict(paddle.load(path))
return model
def DenseNet169(**kwargs):
'''DenseNet169
'''
pretrained = kwargs.pop('pretrained', False)
model = _densenet.DenseNet169(**kwargs)
if pretrained:
assert 'DenseNet169' in _checkpoints, 'Not provide `DenseNet169` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['DenseNet169'])
model.set_state_dict(paddle.load(path))
return model
def DenseNet201(**kwargs):
'''DenseNet201
'''
pretrained = kwargs.pop('pretrained', False)
model = _densenet.DenseNet201(**kwargs)
if pretrained:
assert 'DenseNet201' in _checkpoints, 'Not provide `DenseNet201` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['DenseNet201'])
model.set_state_dict(paddle.load(path))
return model
def DenseNet264(**kwargs):
'''DenseNet264
'''
pretrained = kwargs.pop('pretrained', False)
model = _densenet.DenseNet264(**kwargs)
if pretrained:
assert 'DenseNet264' in _checkpoints, 'Not provide `DenseNet264` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['DenseNet264'])
model.set_state_dict(paddle.load(path))
return model
2021-03-25 15:16:22 +08:00
def InceptionV3(**kwargs):
'''InceptionV3
'''
pretrained = kwargs.pop('pretrained', False)
model = _inception_v3.InceptionV3(**kwargs)
if pretrained:
assert 'InceptionV3' in _checkpoints, 'Not provide `InceptionV3` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['InceptionV3'])
model.set_state_dict(paddle.load(path))
return model
def InceptionV4(**kwargs):
'''InceptionV4
'''
pretrained = kwargs.pop('pretrained', False)
model = _inception_v4.InceptionV4(**kwargs)
if pretrained:
assert 'InceptionV4' in _checkpoints, 'Not provide `InceptionV4` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['InceptionV4'])
model.set_state_dict(paddle.load(path))
2021-03-25 15:27:36 +08:00
return model
def GoogLeNet(**kwargs):
'''GoogLeNet
'''
pretrained = kwargs.pop('pretrained', False)
model = _googlenet.GoogLeNet(**kwargs)
if pretrained:
assert 'GoogLeNet' in _checkpoints, 'Not provide `GoogLeNet` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['GoogLeNet'])
model.set_state_dict(paddle.load(path))
return model
def ShuffleNet(**kwargs):
'''ShuffleNet
'''
pretrained = kwargs.pop('pretrained', False)
model = _shufflenet_v2.ShuffleNet(**kwargs)
if pretrained:
assert 'ShuffleNet' in _checkpoints, 'Not provide `ShuffleNet` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['ShuffleNet'])
model.set_state_dict(paddle.load(path))
return model
def MobileNetV1(**kwargs):
'''MobileNetV1
'''
pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v1.MobileNetV1(**kwargs)
if pretrained:
assert 'MobileNetV1' in _checkpoints, 'Not provide `MobileNetV1` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['MobileNetV1'])
model.set_state_dict(paddle.load(path))
return model
def MobileNetV1_x0_25(**kwargs):
'''MobileNetV1_x0_25
'''
pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v1.MobileNetV1_x0_25(**kwargs)
if pretrained:
assert 'MobileNetV1_x0_25' in _checkpoints, 'Not provide `MobileNetV1_x0_25` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['MobileNetV1_x0_25'])
model.set_state_dict(paddle.load(path))
return model
def MobileNetV1_x0_5(**kwargs):
'''MobileNetV1_x0_5
'''
pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v1.MobileNetV1_x0_5(**kwargs)
if pretrained:
assert 'MobileNetV1_x0_5' in _checkpoints, 'Not provide `MobileNetV1_x0_5` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['MobileNetV1_x0_5'])
model.set_state_dict(paddle.load(path))
return model
def MobileNetV1_x0_75(**kwargs):
'''MobileNetV1_x0_75
'''
pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v1.MobileNetV1_x0_75(**kwargs)
if pretrained:
assert 'MobileNetV1_x0_75' in _checkpoints, 'Not provide `MobileNetV1_x0_75` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['MobileNetV1_x0_75'])
model.set_state_dict(paddle.load(path))
return model
def MobileNetV2_x0_25(**kwargs):
'''MobileNetV2_x0_25
'''
pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v2.MobileNetV2_x0_25(**kwargs)
if pretrained:
assert 'MobileNetV2_x0_25' in _checkpoints, 'Not provide `MobileNetV2_x0_25` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['MobileNetV2_x0_25'])
model.set_state_dict(paddle.load(path))
return model
def MobileNetV2_x0_5(**kwargs):
'''MobileNetV2_x0_5
'''
pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v2.MobileNetV2_x0_5(**kwargs)
if pretrained:
assert 'MobileNetV2_x0_5' in _checkpoints, 'Not provide `MobileNetV2_x0_5` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['MobileNetV2_x0_5'])
model.set_state_dict(paddle.load(path))
return model
def MobileNetV2_x0_75(**kwargs):
'''MobileNetV2_x0_75
'''
pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v2.MobileNetV2_x0_75(**kwargs)
if pretrained:
assert 'MobileNetV2_x0_75' in _checkpoints, 'Not provide `MobileNetV2_x0_75` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['MobileNetV2_x0_75'])
model.set_state_dict(paddle.load(path))
return model
def MobileNetV2_x1_5(**kwargs):
'''MobileNetV2_x1_5
'''
pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v2.MobileNetV2_x1_5(**kwargs)
if pretrained:
assert 'MobileNetV2_x1_5' in _checkpoints, 'Not provide `MobileNetV2_x1_5` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['MobileNetV2_x1_5'])
model.set_state_dict(paddle.load(path))
return model
def MobileNetV2_x2_0(**kwargs):
'''MobileNetV2_x2_0
'''
pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v2.MobileNetV2_x2_0(**kwargs)
if pretrained:
assert 'MobileNetV2_x2_0' in _checkpoints, 'Not provide `MobileNetV2_x2_0` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['MobileNetV2_x2_0'])
model.set_state_dict(paddle.load(path))
return model
def MobileNetV3_large_x0_35(**kwargs):
'''MobileNetV3_large_x0_35
'''
pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v3.MobileNetV3_large_x0_35(**kwargs)
if pretrained:
assert 'MobileNetV3_large_x0_35' in _checkpoints, 'Not provide `MobileNetV3_large_x0_35` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['MobileNetV3_large_x0_35'])
model.set_state_dict(paddle.load(path))
return model
def MobileNetV3_large_x0_5(**kwargs):
'''MobileNetV3_large_x0_5
'''
pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v3.MobileNetV3_large_x0_5(**kwargs)
if pretrained:
assert 'MobileNetV3_large_x0_5' in _checkpoints, 'Not provide `MobileNetV3_large_x0_5` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['MobileNetV3_large_x0_5'])
model.set_state_dict(paddle.load(path))
return model
def MobileNetV3_large_x0_75(**kwargs):
'''MobileNetV3_large_x0_75
'''
pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v3.MobileNetV3_large_x0_75(**kwargs)
if pretrained:
assert 'MobileNetV3_large_x0_75' in _checkpoints, 'Not provide `MobileNetV3_large_x0_75` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['MobileNetV3_large_x0_75'])
model.set_state_dict(paddle.load(path))
return model
def MobileNetV3_large_x1_0(**kwargs):
'''MobileNetV3_large_x1_0
'''
pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v3.MobileNetV3_large_x1_0(**kwargs)
if pretrained:
assert 'MobileNetV3_large_x1_0' in _checkpoints, 'Not provide `MobileNetV3_large_x1_0` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['MobileNetV3_large_x1_0'])
model.set_state_dict(paddle.load(path))
return model
def MobileNetV3_large_x1_25(**kwargs):
'''MobileNetV3_large_x1_25
'''
pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v3.MobileNetV3_large_x1_25(**kwargs)
if pretrained:
assert 'MobileNetV3_large_x1_25' in _checkpoints, 'Not provide `MobileNetV3_large_x1_25` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['MobileNetV3_large_x1_25'])
model.set_state_dict(paddle.load(path))
return model
def MobileNetV3_small_x0_35(**kwargs):
'''MobileNetV3_small_x0_35
'''
pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v3.MobileNetV3_small_x0_35(**kwargs)
if pretrained:
assert 'MobileNetV3_small_x0_35' in _checkpoints, 'Not provide `MobileNetV3_small_x0_35` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['MobileNetV3_small_x0_35'])
model.set_state_dict(paddle.load(path))
return model
def MobileNetV3_small_x0_5(**kwargs):
'''MobileNetV3_small_x0_5
'''
pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v3.MobileNetV3_small_x0_5(**kwargs)
if pretrained:
assert 'MobileNetV3_small_x0_5' in _checkpoints, 'Not provide `MobileNetV3_small_x0_5` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['MobileNetV3_small_x0_5'])
model.set_state_dict(paddle.load(path))
return model
def MobileNetV3_small_x0_75(**kwargs):
'''MobileNetV3_small_x0_75
'''
pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v3.MobileNetV3_small_x0_75(**kwargs)
if pretrained:
assert 'MobileNetV3_small_x0_75' in _checkpoints, 'Not provide `MobileNetV3_small_x0_75` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['MobileNetV3_small_x0_75'])
model.set_state_dict(paddle.load(path))
return model
def MobileNetV3_small_x1_0(**kwargs):
'''MobileNetV3_small_x1_0
'''
pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v3.MobileNetV3_small_x1_0(**kwargs)
if pretrained:
assert 'MobileNetV3_small_x1_0' in _checkpoints, 'Not provide `MobileNetV3_small_x1_0` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['MobileNetV3_small_x1_0'])
model.set_state_dict(paddle.load(path))
return model
def MobileNetV3_small_x1_25(**kwargs):
'''MobileNetV3_small_x1_25
'''
pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v3.MobileNetV3_small_x1_25(**kwargs)
if pretrained:
assert 'MobileNetV3_small_x1_25' in _checkpoints, 'Not provide `MobileNetV3_small_x1_25` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['MobileNetV3_small_x1_25'])
model.set_state_dict(paddle.load(path))
return model