PaddleClas/docs/en/models/Twins_en.md

25 lines
1.4 KiB
Markdown
Raw Normal View History

2021-07-07 19:50:31 +08:00
# Twins
2021-12-07 10:31:53 +08:00
---
## Catalogue
2021-07-07 19:50:31 +08:00
2021-12-07 10:31:53 +08:00
* [1. Overview](#1)
2021-12-07 10:39:56 +08:00
* [2. Accuracy, FLOPs and Parameters](#2)
2021-12-07 10:31:53 +08:00
<a name='1'></a>
## 1. Overview
2021-07-07 19:50:31 +08:00
The Twins network includes Twins-PCPVT and Twins-SVT, which focuses on the meticulous design of the spatial attention mechanism, resulting in a simple but more effective solution. Since the architecture only involves matrix multiplication, and the current deep learning framework has a high degree of optimization for matrix multiplication, the architecture is very efficient and easy to implement. Moreover, this architecture can achieve excellent performance in a variety of downstream vision tasks such as image classification, target detection, and semantic segmentation. [Paper](https://arxiv.org/abs/2104.13840).
2021-12-07 10:31:53 +08:00
<a name='2'></a>
2021-12-07 10:39:56 +08:00
## 2. Accuracy, FLOPs and Parameters
2021-07-07 19:50:31 +08:00
2021-07-27 12:10:10 +08:00
| Models | Top1 | Top5 | Reference<br>top1 | Reference<br>top5 | FLOPs<br>(G) | Params<br>(M) |
2021-07-07 19:50:31 +08:00
|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
| pcpvt_small | 0.8082 | 0.9552 | 0.812 | - | 3.7 | 24.1 |
| pcpvt_base | 0.8242 | 0.9619 | 0.827 | - | 6.4 | 43.8 |
| pcpvt_large | 0.8273 | 0.9650 | 0.831 | - | 9.5 | 60.9 |
| alt_gvt_small | 0.8140 | 0.9546 | 0.817 | - | 2.8 | 24 |
| alt_gvt_base | 0.8294 | 0.9621 | 0.832 | - | 8.3 | 56 |
| alt_gvt_large | 0.8331 | 0.9642 | 0.837 | - | 14.8 | 99.2 |
**Note**:The difference in accuracy from Reference is due to the difference in data preprocessing.