PaddleClas/ppcls/data/__init__.py

272 lines
10 KiB
Python
Raw Normal View History

2021-05-31 13:05:24 +08:00
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2020-04-09 02:16:30 +08:00
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
2021-06-03 15:31:18 +08:00
2021-09-30 18:16:57 +08:00
import inspect
2021-05-31 13:05:24 +08:00
import copy
import random
2023-02-21 17:26:57 +08:00
import platform
2021-05-31 13:05:24 +08:00
import paddle
import numpy as np
import paddle.distributed as dist
from functools import partial
2021-05-31 13:05:24 +08:00
from paddle.io import DistributedBatchSampler, BatchSampler, DataLoader
from ppcls.utils import logger
2021-06-03 15:31:18 +08:00
from ppcls.data import dataloader
2021-05-31 13:05:24 +08:00
# dataset
2021-06-03 15:31:18 +08:00
from ppcls.data.dataloader.imagenet_dataset import ImageNetDataset
from ppcls.data.dataloader.multilabel_dataset import MultiLabelDataset
from ppcls.data.dataloader.common_dataset import create_operators
from ppcls.data.dataloader.vehicle_dataset import CompCars, VeriWild
2021-06-07 15:45:02 +08:00
from ppcls.data.dataloader.logo_dataset import LogoDataset
2021-06-07 15:42:30 +08:00
from ppcls.data.dataloader.icartoon_dataset import ICartoonDataset
2021-09-04 22:07:55 +08:00
from ppcls.data.dataloader.mix_dataset import MixDataset
2021-12-16 15:25:23 +08:00
from ppcls.data.dataloader.multi_scale_dataset import MultiScaleDataset
2023-02-07 14:54:56 +08:00
from ppcls.data.dataloader.person_dataset import Market1501, MSMT17, DukeMTMC
2022-05-16 11:50:35 +08:00
from ppcls.data.dataloader.face_dataset import FiveValidationDataset, AdaFaceDataset
from ppcls.data.dataloader.custom_label_dataset import CustomLabelDataset
from ppcls.data.dataloader.cifar import Cifar10, Cifar100
2023-02-07 14:54:56 +08:00
from ppcls.data.dataloader.metabin_sampler import DomainShuffleBatchSampler, NaiveIdentityBatchSampler
2021-05-31 16:47:57 +08:00
2021-05-31 13:05:24 +08:00
# sampler
2021-06-03 20:14:45 +08:00
from ppcls.data.dataloader.DistributedRandomIdentitySampler import DistributedRandomIdentitySampler
2021-09-18 11:13:54 +08:00
from ppcls.data.dataloader.pk_sampler import PKSampler
2021-09-04 22:07:55 +08:00
from ppcls.data.dataloader.mix_sampler import MixSampler
from ppcls.data.dataloader.multi_scale_sampler import MultiScaleSampler
2021-06-11 18:25:28 +08:00
from ppcls.data import preprocess
2021-06-03 15:31:18 +08:00
from ppcls.data.preprocess import transform
2021-05-31 13:05:24 +08:00
2021-06-02 20:04:24 +08:00
2021-09-30 18:16:57 +08:00
def create_operators(params, class_num=None):
2021-06-10 17:19:49 +08:00
"""
create operators based on the config
Args:
params(list): a dict list, used to create some operators
"""
assert isinstance(params, list), ('operator config should be a list')
ops = []
for operator in params:
assert isinstance(operator,
dict) and len(operator) == 1, "yaml format error"
op_name = list(operator)[0]
param = {} if operator[op_name] is None else operator[op_name]
2021-09-30 18:16:57 +08:00
op_func = getattr(preprocess, op_name)
if "class_num" in inspect.getfullargspec(op_func).args:
param.update({"class_num": class_num})
op = op_func(**param)
2021-06-10 17:19:49 +08:00
ops.append(op)
return ops
def worker_init_fn(worker_id: int, num_workers: int, rank: int, seed: int):
"""callback function on each worker subprocess after seeding and before data loading.
Args:
worker_id (int): Worker id in [0, num_workers - 1]
num_workers (int): Number of subprocesses to use for data loading.
rank (int): Rank of process in distributed environment. If in non-distributed environment, it is a constant number `0`.
seed (int): Random seed
"""
# The seed of each worker equals to
# num_worker * rank + worker_id + user_seed
worker_seed = num_workers * rank + worker_id + seed
np.random.seed(worker_seed)
random.seed(worker_seed)
def build(config, mode, use_dali=False, seed=None):
assert mode in [
'Train', 'Eval', 'Test', 'Gallery', 'Query', 'UnLabelTrain'
], "Dataset mode should be Train, Eval, Test, Gallery, Query, UnLabelTrain"
assert mode in config.keys(), "{} config not in yaml".format(mode)
2021-05-31 13:05:24 +08:00
# build dataset
if use_dali:
from ppcls.data.dataloader.dali import dali_dataloader
return dali_dataloader(
config,
mode,
2022-04-21 16:06:15 +08:00
paddle.device.get_device(),
num_threads=config[mode]['loader']["num_workers"],
2022-11-28 14:14:17 +08:00
seed=seed,
enable_fuse=True)
class_num = config.get("class_num", None)
epochs = config.get("epochs", None)
config_dataset = config[mode]['dataset']
config_dataset = copy.deepcopy(config_dataset)
dataset_name = config_dataset.pop('name')
if 'batch_transform_ops' in config_dataset:
batch_transform = config_dataset['batch_transform_ops']
else:
batch_transform = None
dataset = eval(dataset_name)(**config_dataset)
logger.debug("build dataset({}) success...".format(dataset))
# build sampler
config_sampler = config[mode]['sampler']
if config_sampler and "name" not in config_sampler:
batch_sampler = None
batch_size = config_sampler["batch_size"]
drop_last = config_sampler["drop_last"]
shuffle = config_sampler["shuffle"]
else:
sampler_name = config_sampler.pop("name")
sampler_argspec = inspect.getargspec(eval(sampler_name).__init__).args
if "total_epochs" in sampler_argspec:
config_sampler.update({"total_epochs": epochs})
batch_sampler = eval(sampler_name)(dataset, **config_sampler)
logger.debug("build batch_sampler({}) success...".format(batch_sampler))
# build batch operator
def mix_collate_fn(batch):
batch = transform(batch, batch_ops)
# batch each field
slots = []
for items in batch:
for i, item in enumerate(items):
if len(slots) < len(items):
slots.append([item])
else:
slots[i].append(item)
return [np.stack(slot, axis=0) for slot in slots]
if isinstance(batch_transform, list):
batch_ops = create_operators(batch_transform, class_num)
batch_collate_fn = mix_collate_fn
else:
batch_collate_fn = None
# build dataloader
config_loader = config[mode]['loader']
num_workers = config_loader["num_workers"]
use_shared_memory = config_loader["use_shared_memory"]
init_fn = partial(
worker_init_fn,
num_workers=num_workers,
rank=dist.get_rank(),
seed=seed) if seed is not None else None
if batch_sampler is None:
data_loader = DataLoader(
dataset=dataset,
places=paddle.device.get_device(),
num_workers=num_workers,
return_list=True,
use_shared_memory=use_shared_memory,
batch_size=batch_size,
shuffle=shuffle,
drop_last=drop_last,
collate_fn=batch_collate_fn,
worker_init_fn=init_fn)
2021-05-31 13:05:24 +08:00
else:
data_loader = DataLoader(
dataset=dataset,
places=paddle.device.get_device(),
2021-05-31 13:05:24 +08:00
num_workers=num_workers,
return_list=True,
use_shared_memory=use_shared_memory,
batch_sampler=batch_sampler,
collate_fn=batch_collate_fn,
worker_init_fn=init_fn)
2021-05-31 13:05:24 +08:00
total_samples = len(
data_loader.dataset) if not use_dali else data_loader.size
max_iter = len(data_loader) - 1 if platform.system() == "Windows" else len(
data_loader)
data_loader.max_iter = max_iter
data_loader.total_samples = total_samples
logger.debug("build data_loader({}) success...".format(data_loader))
return data_loader
# TODO(gaotingquan): perf
class DataIterator(object):
def __init__(self, dataloader, use_dali=False):
self.dataloader = dataloader
self.use_dali = use_dali
self.iterator = iter(dataloader)
self.max_iter = dataloader.max_iter
self.total_samples = dataloader.total_samples
def get_batch(self):
# fetch data batch from dataloader
try:
batch = next(self.iterator)
except Exception:
# NOTE: reset DALI dataloader manually
if self.use_dali:
self.dataloader.reset()
self.iterator = iter(self.dataloader)
batch = next(self.iterator)
return batch
def build_dataloader(config, mode):
class_num = config["Arch"].get("class_num", None)
config["DataLoader"].update({"class_num": class_num})
config["DataLoader"].update({"epochs": config["Global"]["epochs"]})
use_dali = config["Global"].get("use_dali", False)
dataloader_dict = {
"Train": None,
"UnLabelTrain": None,
"Eval": None,
"Query": None,
"Gallery": None,
"GalleryQuery": None
}
if mode == 'train':
train_dataloader = build(
config["DataLoader"], "Train", use_dali, seed=None)
if config["DataLoader"]["Train"].get("max_iter", None):
2023-02-21 17:26:57 +08:00
# set max iteration per epoch mannualy, when training by iteration(s), such as XBM, FixMatch.
2023-02-27 20:23:46 +08:00
max_iter = config["Train"].get("max_iter")
update_freq = config["Global"].get("update_freq", 1)
max_iter = train_dataloader.max_iter // update_freq * update_freq
train_dataloader.max_iter = max_iter
if config["DataLoader"]["Train"].get("convert_iterator", True):
train_dataloader = DataIterator(train_dataloader, use_dali)
dataloader_dict["Train"] = train_dataloader
if config["DataLoader"].get('UnLabelTrain', None) is not None:
dataloader_dict["UnLabelTrain"] = build(
config["DataLoader"], "UnLabelTrain", use_dali, seed=None)
if mode == "eval" or (mode == "train" and
config["Global"]["eval_during_train"]):
task = config["Global"].get("task", "classification")
if task in ["classification", "adaface"]:
dataloader_dict["Eval"] = build(
config["DataLoader"], "Eval", use_dali, seed=None)
elif task == "retrieval":
if len(config["DataLoader"]["Eval"].keys()) == 1:
key = list(config["DataLoader"]["Eval"].keys())[0]
dataloader_dict["GalleryQuery"] = build(
config["DataLoader"]["Eval"], key, use_dali)
else:
dataloader_dict["Gallery"] = build(
config["DataLoader"]["Eval"], "Gallery", use_dali)
dataloader_dict["Query"] = build(config["DataLoader"]["Eval"],
"Query", use_dali)
return dataloader_dict