PaddleClas/ppcls/arch/backbone/legendary_models/mobilenet_v1.py

205 lines
6.4 KiB
Python
Raw Normal View History

2021-05-27 13:36:33 +08:00
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
2021-05-27 13:50:12 +08:00
from __future__ import absolute_import, division, print_function
import numpy as np
import paddle
from paddle import ParamAttr
import paddle.nn as nn
2021-05-27 19:13:03 +08:00
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout, ReLU, Flatten
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
from paddle.nn.initializer import KaimingNormal
import math
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
__all__ = [
"MobileNetV1_x0_25", "MobileNetV1_x0_5", "MobileNetV1_x0_75", "MobileNetV1"
]
2021-05-27 16:22:52 +08:00
class ConvBNLayer(TheseusLayer):
def __init__(self,
num_channels,
filter_size,
num_filters,
stride,
padding,
2021-05-27 16:22:52 +08:00
num_groups=1):
super(ConvBNLayer, self).__init__()
self._conv = Conv2D(
in_channels=num_channels,
out_channels=num_filters,
kernel_size=filter_size,
stride=stride,
padding=padding,
groups=num_groups,
weight_attr=ParamAttr(
2021-05-27 14:00:39 +08:00
initializer=KaimingNormal()),
bias_attr=False)
self._batch_norm = BatchNorm(
2021-05-27 16:22:52 +08:00
num_filters)
self._activation = ReLU()
2021-05-27 13:50:12 +08:00
def forward(self, x):
x = self._conv(x)
x = self._batch_norm(x)
2021-05-27 16:22:52 +08:00
x = self._activation(x)
2021-05-27 13:50:12 +08:00
return x
class DepthwiseSeparable(TheseusLayer):
def __init__(self,
num_channels,
num_filters1,
num_filters2,
num_groups,
stride,
2021-05-27 14:00:39 +08:00
scale):
super(DepthwiseSeparable, self).__init__()
self._depthwise_conv = ConvBNLayer(
num_channels=num_channels,
num_filters=int(num_filters1 * scale),
filter_size=3,
stride=stride,
padding=1,
2021-05-27 14:00:39 +08:00
num_groups=int(num_groups * scale))
self._pointwise_conv = ConvBNLayer(
num_channels=int(num_filters1 * scale),
filter_size=1,
num_filters=int(num_filters2 * scale),
stride=1,
2021-05-27 14:00:39 +08:00
padding=0)
2021-05-27 13:50:12 +08:00
def forward(self, x):
x = self._depthwise_conv(x)
x = self._pointwise_conv(x)
return x
class MobileNet(TheseusLayer):
2021-05-28 10:36:48 +08:00
def __init__(self, scale=1.0, class_num=1000):
super(MobileNet, self).__init__()
self.scale = scale
self.block_list = []
self.conv1 = ConvBNLayer(
num_channels=3,
filter_size=3,
num_filters=int(32 * scale),
stride=2,
2021-05-27 14:00:39 +08:00
padding=1)
2021-05-27 16:22:52 +08:00
self.cfg = [[int(32 * scale), 32, 64, 32, 1],
[int(64 * scale), 64, 128, 64, 2],
[int(128 * scale), 128, 128, 128, 1],
[int(128 * scale), 128, 256, 128, 2],
[int(256 * scale), 256, 256, 256, 1],
[int(256 * scale), 256, 512, 256, 2],
[int(512 * scale), 512, 512, 512, 1],
[int(512 * scale), 512, 512, 512, 1],
[int(512 * scale), 512, 512, 512, 1],
[int(512 * scale), 512, 512, 512, 1],
[int(512 * scale), 512, 512, 512, 1],
[int(512 * scale), 512, 1024, 512, 2],
[int(1024 * scale), 1024, 1024, 1024, 1]]
self.blocks = nn.Sequential(*[
DepthwiseSeparable(
num_channels=params[0],
num_filters1=params[1],
num_filters2=params[2],
num_groups=params[3],
stride=params[4],
scale=scale) for params in self.cfg])
self.pool2d_avg = AdaptiveAvgPool2D(1)
2021-05-27 19:13:03 +08:00
self.flatten = Flatten(start_axis=1, stop_axis=-1)
self.out = Linear(
int(1024 * scale),
2021-05-28 10:36:48 +08:00
class_num,
2021-05-27 14:00:39 +08:00
weight_attr=ParamAttr(initializer=KaimingNormal()))
2021-05-27 19:13:03 +08:00
2021-05-27 13:50:12 +08:00
def forward(self, x):
x = self.conv1(x)
2021-05-27 16:22:52 +08:00
x = self.blocks(x)
2021-05-27 13:50:12 +08:00
x = self.pool2d_avg(x)
2021-05-27 19:13:03 +08:00
x = self.flatten(x)
2021-05-27 13:50:12 +08:00
x = self.out(x)
return x
def MobileNetV1_x0_25(**args):
2021-05-28 10:36:48 +08:00
"""
MobileNetV1_x0_25
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_num: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `MobileNetV1_x0_25` model depends on args.
"""
model = MobileNet(scale=0.25, **args)
return model
def MobileNetV1_x0_5(**args):
2021-05-28 10:36:48 +08:00
"""
MobileNetV1_x0_5
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_num: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `MobileNetV1_x0_5` model depends on args.
"""
model = MobileNet(scale=0.5, **args)
return model
def MobileNetV1_x0_75(**args):
2021-05-28 10:36:48 +08:00
"""
MobileNetV1_x0_75
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_num: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `MobileNetV1_x0_75` model depends on args.
"""
model = MobileNet(scale=0.75, **args)
return model
def MobileNetV1(**args):
2021-05-28 10:36:48 +08:00
"""
MobileNetV1
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_num: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `MobileNetV1` model depends on args.
"""
model = MobileNet(scale=1.0, **args)
return model
2021-05-27 16:22:52 +08:00