248 lines
7.7 KiB
Python
248 lines
7.7 KiB
Python
|
import paddle
|
||
|
import paddle.nn as nn
|
||
|
|
||
|
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||
|
|
||
|
|
||
|
MODEL_URLS = {
|
||
|
'HarDNet39_ds':
|
||
|
'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/model_zoo/HarDNet39_ds_pretrained.pdparams',
|
||
|
'HarDNet68_ds':
|
||
|
'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/model_zoo/HarDNet68_ds_pretrained.pdparams',
|
||
|
'HarDNet68':
|
||
|
'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/model_zoo/HarDNet68_pretrained.pdparams',
|
||
|
'HarDNet85':
|
||
|
'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/model_zoo/HarDNet85_pretrained.pdparams'
|
||
|
}
|
||
|
|
||
|
|
||
|
def ConvLayer(in_channels, out_channels, kernel_size=3, stride=1, bias_attr=False):
|
||
|
layer = nn.Sequential(
|
||
|
('conv', nn.Conv2D(
|
||
|
in_channels, out_channels, kernel_size=kernel_size,
|
||
|
stride=stride, padding=kernel_size//2, groups=1, bias_attr=bias_attr
|
||
|
)),
|
||
|
('norm', nn.BatchNorm2D(out_channels)),
|
||
|
('relu', nn.ReLU6())
|
||
|
)
|
||
|
return layer
|
||
|
|
||
|
|
||
|
def DWConvLayer(in_channels, out_channels, kernel_size=3, stride=1, bias_attr=False):
|
||
|
layer = nn.Sequential(
|
||
|
('dwconv', nn.Conv2D(
|
||
|
in_channels, out_channels, kernel_size=kernel_size,
|
||
|
stride=stride, padding=1, groups=out_channels, bias_attr=bias_attr
|
||
|
)),
|
||
|
('norm', nn.BatchNorm2D(out_channels))
|
||
|
)
|
||
|
return layer
|
||
|
|
||
|
|
||
|
def CombConvLayer(in_channels, out_channels, kernel_size=1, stride=1):
|
||
|
layer = nn.Sequential(
|
||
|
('layer1', ConvLayer(in_channels, out_channels, kernel_size=kernel_size)),
|
||
|
('layer2', DWConvLayer(out_channels, out_channels, stride=stride))
|
||
|
)
|
||
|
return layer
|
||
|
|
||
|
|
||
|
class HarDBlock(nn.Layer):
|
||
|
def __init__(self, in_channels, growth_rate, grmul, n_layers,
|
||
|
keepBase=False, residual_out=False, dwconv=False):
|
||
|
super().__init__()
|
||
|
self.keepBase = keepBase
|
||
|
self.links = []
|
||
|
layers_ = []
|
||
|
self.out_channels = 0 # if upsample else in_channels
|
||
|
for i in range(n_layers):
|
||
|
outch, inch, link = self.get_link(i+1, in_channels, growth_rate, grmul)
|
||
|
self.links.append(link)
|
||
|
if dwconv:
|
||
|
layers_.append(CombConvLayer(inch, outch))
|
||
|
else:
|
||
|
layers_.append(ConvLayer(inch, outch))
|
||
|
|
||
|
if (i % 2 == 0) or (i == n_layers - 1):
|
||
|
self.out_channels += outch
|
||
|
# print("Blk out =",self.out_channels)
|
||
|
self.layers = nn.LayerList(layers_)
|
||
|
|
||
|
def get_link(self, layer, base_ch, growth_rate, grmul):
|
||
|
if layer == 0:
|
||
|
return base_ch, 0, []
|
||
|
out_channels = growth_rate
|
||
|
|
||
|
link = []
|
||
|
for i in range(10):
|
||
|
dv = 2 ** i
|
||
|
if layer % dv == 0:
|
||
|
k = layer - dv
|
||
|
link.append(k)
|
||
|
if i > 0:
|
||
|
out_channels *= grmul
|
||
|
|
||
|
out_channels = int(int(out_channels + 1) / 2) * 2
|
||
|
in_channels = 0
|
||
|
|
||
|
for i in link:
|
||
|
ch, _, _ = self.get_link(i, base_ch, growth_rate, grmul)
|
||
|
in_channels += ch
|
||
|
|
||
|
return out_channels, in_channels, link
|
||
|
|
||
|
def forward(self, x):
|
||
|
layers_ = [x]
|
||
|
|
||
|
for layer in range(len(self.layers)):
|
||
|
link = self.links[layer]
|
||
|
tin = []
|
||
|
for i in link:
|
||
|
tin.append(layers_[i])
|
||
|
if len(tin) > 1:
|
||
|
x = paddle.concat(tin, 1)
|
||
|
else:
|
||
|
x = tin[0]
|
||
|
out = self.layers[layer](x)
|
||
|
layers_.append(out)
|
||
|
|
||
|
t = len(layers_)
|
||
|
out_ = []
|
||
|
for i in range(t):
|
||
|
if (i == 0 and self.keepBase) or (i == t-1) or (i % 2 == 1):
|
||
|
out_.append(layers_[i])
|
||
|
out = paddle.concat(out_, 1)
|
||
|
|
||
|
return out
|
||
|
|
||
|
|
||
|
class HarDNet(nn.Layer):
|
||
|
def __init__(self, depth_wise=False, arch=85,
|
||
|
class_dim=1000, with_pool=True):
|
||
|
super().__init__()
|
||
|
first_ch = [32, 64]
|
||
|
second_kernel = 3
|
||
|
max_pool = True
|
||
|
grmul = 1.7
|
||
|
drop_rate = 0.1
|
||
|
|
||
|
# HarDNet68
|
||
|
ch_list = [128, 256, 320, 640, 1024]
|
||
|
gr = [14, 16, 20, 40, 160]
|
||
|
n_layers = [8, 16, 16, 16, 4]
|
||
|
downSamp = [1, 0, 1, 1, 0]
|
||
|
|
||
|
if arch == 85:
|
||
|
# HarDNet85
|
||
|
first_ch = [48, 96]
|
||
|
ch_list = [192, 256, 320, 480, 720, 1280]
|
||
|
gr = [24, 24, 28, 36, 48, 256]
|
||
|
n_layers = [8, 16, 16, 16, 16, 4]
|
||
|
downSamp = [1, 0, 1, 0, 1, 0]
|
||
|
drop_rate = 0.2
|
||
|
|
||
|
elif arch == 39:
|
||
|
# HarDNet39
|
||
|
first_ch = [24, 48]
|
||
|
ch_list = [96, 320, 640, 1024]
|
||
|
grmul = 1.6
|
||
|
gr = [16, 20, 64, 160]
|
||
|
n_layers = [4, 16, 8, 4]
|
||
|
downSamp = [1, 1, 1, 0]
|
||
|
|
||
|
if depth_wise:
|
||
|
second_kernel = 1
|
||
|
max_pool = False
|
||
|
drop_rate = 0.05
|
||
|
|
||
|
blks = len(n_layers)
|
||
|
self.base = nn.LayerList([])
|
||
|
|
||
|
# First Layer: Standard Conv3x3, Stride=2
|
||
|
self.base.append(
|
||
|
ConvLayer(in_channels=3, out_channels=first_ch[0], kernel_size=3,
|
||
|
stride=2, bias_attr=False))
|
||
|
|
||
|
# Second Layer
|
||
|
self.base.append(
|
||
|
ConvLayer(first_ch[0], first_ch[1], kernel_size=second_kernel))
|
||
|
|
||
|
# Maxpooling or DWConv3x3 downsampling
|
||
|
if max_pool:
|
||
|
self.base.append(nn.MaxPool2D(kernel_size=3, stride=2, padding=1))
|
||
|
else:
|
||
|
self.base.append(DWConvLayer(first_ch[1], first_ch[1], stride=2))
|
||
|
|
||
|
# Build all HarDNet blocks
|
||
|
ch = first_ch[1]
|
||
|
for i in range(blks):
|
||
|
blk = HarDBlock(ch, gr[i], grmul, n_layers[i], dwconv=depth_wise)
|
||
|
ch = blk.out_channels
|
||
|
self.base.append(blk)
|
||
|
|
||
|
if i == blks-1 and arch == 85:
|
||
|
self.base.append(nn.Dropout(0.1))
|
||
|
|
||
|
self.base.append(ConvLayer(ch, ch_list[i], kernel_size=1))
|
||
|
ch = ch_list[i]
|
||
|
if downSamp[i] == 1:
|
||
|
if max_pool:
|
||
|
self.base.append(nn.MaxPool2D(kernel_size=2, stride=2))
|
||
|
else:
|
||
|
self.base.append(DWConvLayer(ch, ch, stride=2))
|
||
|
|
||
|
ch = ch_list[blks-1]
|
||
|
|
||
|
layers = []
|
||
|
|
||
|
if with_pool:
|
||
|
layers.append(nn.AdaptiveAvgPool2D((1, 1)))
|
||
|
|
||
|
if class_dim > 0:
|
||
|
layers.append(nn.Flatten())
|
||
|
layers.append(nn.Dropout(drop_rate))
|
||
|
layers.append(nn.Linear(ch, class_dim))
|
||
|
|
||
|
self.base.append(nn.Sequential(*layers))
|
||
|
|
||
|
def forward(self, x):
|
||
|
for layer in self.base:
|
||
|
x = layer(x)
|
||
|
return x
|
||
|
|
||
|
|
||
|
def _load_pretrained(pretrained, model, model_url, use_ssld=False):
|
||
|
if pretrained is False:
|
||
|
pass
|
||
|
elif pretrained is True:
|
||
|
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
|
||
|
elif isinstance(pretrained, str):
|
||
|
load_dygraph_pretrain(model, pretrained)
|
||
|
else:
|
||
|
raise RuntimeError(
|
||
|
"pretrained type is not available. Please use `string` or `boolean` type."
|
||
|
)
|
||
|
|
||
|
|
||
|
def HarDNet39_ds(pretrained=False, **kwargs):
|
||
|
model = HarDNet(arch=39, depth_wise=True, **kwargs)
|
||
|
_load_pretrained(pretrained, model, MODEL_URLS["HarDNet39_ds"])
|
||
|
return model
|
||
|
|
||
|
|
||
|
def HarDNet68_ds(pretrained=False, **kwargs):
|
||
|
model = HarDNet(arch=68, depth_wise=True, **kwargs)
|
||
|
_load_pretrained(pretrained, model, MODEL_URLS["HarDNet68_ds"])
|
||
|
return model
|
||
|
|
||
|
|
||
|
def HarDNet68(pretrained=False, **kwargs):
|
||
|
model = HarDNet(arch=68, **kwargs)
|
||
|
_load_pretrained(pretrained, model, MODEL_URLS["HarDNet68"])
|
||
|
return model
|
||
|
|
||
|
|
||
|
def HarDNet85(pretrained=False, **kwargs):
|
||
|
model = HarDNet(arch=85, **kwargs)
|
||
|
_load_pretrained(pretrained, model, MODEL_URLS["HarDNet85"])
|
||
|
return model
|