PaddleClas/ppcls/arch/backbone/model_zoo/vgg.py

153 lines
4.8 KiB
Python
Raw Normal View History

2020-04-09 02:16:30 +08:00
import paddle
2020-09-14 01:11:10 +08:00
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
__all__ = ["VGG11", "VGG13", "VGG16", "VGG19"]
2020-09-14 01:11:10 +08:00
class ConvBlock(nn.Layer):
def __init__(self, input_channels, output_channels, groups, name=None):
2020-06-29 12:02:41 +08:00
super(ConvBlock, self).__init__()
self.groups = groups
self._conv_1 = Conv2D(
2020-09-14 01:11:10 +08:00
in_channels=input_channels,
out_channels=output_channels,
kernel_size=3,
stride=1,
padding=1,
weight_attr=ParamAttr(name=name + "1_weights"),
bias_attr=False)
if groups == 2 or groups == 3 or groups == 4:
self._conv_2 = Conv2D(
2020-09-14 01:11:10 +08:00
in_channels=output_channels,
out_channels=output_channels,
kernel_size=3,
stride=1,
padding=1,
weight_attr=ParamAttr(name=name + "2_weights"),
bias_attr=False)
if groups == 3 or groups == 4:
self._conv_3 = Conv2D(
2020-09-14 01:11:10 +08:00
in_channels=output_channels,
out_channels=output_channels,
kernel_size=3,
stride=1,
padding=1,
weight_attr=ParamAttr(name=name + "3_weights"),
bias_attr=False)
if groups == 4:
self._conv_4 = Conv2D(
2020-09-14 01:11:10 +08:00
in_channels=output_channels,
out_channels=output_channels,
kernel_size=3,
stride=1,
padding=1,
weight_attr=ParamAttr(name=name + "4_weights"),
bias_attr=False)
self._pool = MaxPool2D(kernel_size=2, stride=2, padding=0)
def forward(self, inputs):
x = self._conv_1(inputs)
2020-09-14 01:11:10 +08:00
x = F.relu(x)
if self.groups == 2 or self.groups == 3 or self.groups == 4:
x = self._conv_2(x)
2020-09-14 01:11:10 +08:00
x = F.relu(x)
if self.groups == 3 or self.groups == 4:
x = self._conv_3(x)
2020-09-14 01:11:10 +08:00
x = F.relu(x)
if self.groups == 4:
x = self._conv_4(x)
2020-09-14 01:11:10 +08:00
x = F.relu(x)
x = self._pool(x)
return x
2020-09-14 01:11:10 +08:00
class VGGNet(nn.Layer):
def __init__(self, layers=11, stop_grad_layers=0, class_dim=1000):
super(VGGNet, self).__init__()
2020-04-09 02:16:30 +08:00
self.layers = layers
self.stop_grad_layers = stop_grad_layers
2020-09-14 01:11:10 +08:00
self.vgg_configure = {
11: [1, 1, 2, 2, 2],
13: [2, 2, 2, 2, 2],
16: [2, 2, 3, 3, 3],
19: [2, 2, 4, 4, 4]
}
assert self.layers in self.vgg_configure.keys(), \
2020-09-14 01:11:10 +08:00
"supported layers are {} but input layer is {}".format(
self.vgg_configure.keys(), layers)
self.groups = self.vgg_configure[self.layers]
2020-06-29 12:02:41 +08:00
self._conv_block_1 = ConvBlock(3, 64, self.groups[0], name="conv1_")
self._conv_block_2 = ConvBlock(64, 128, self.groups[1], name="conv2_")
self._conv_block_3 = ConvBlock(128, 256, self.groups[2], name="conv3_")
self._conv_block_4 = ConvBlock(256, 512, self.groups[3], name="conv4_")
self._conv_block_5 = ConvBlock(512, 512, self.groups[4], name="conv5_")
for idx, block in enumerate([
self._conv_block_1, self._conv_block_2, self._conv_block_3,
self._conv_block_4, self._conv_block_5
]):
if self.stop_grad_layers >= idx + 1:
for param in block.parameters():
param.trainable = False
2020-09-16 15:26:21 +08:00
self._drop = Dropout(p=0.5, mode="downscale_in_infer")
2020-09-14 01:11:10 +08:00
self._fc1 = Linear(
7 * 7 * 512,
4096,
weight_attr=ParamAttr(name="fc6_weights"),
bias_attr=ParamAttr(name="fc6_offset"))
self._fc2 = Linear(
4096,
4096,
weight_attr=ParamAttr(name="fc7_weights"),
bias_attr=ParamAttr(name="fc7_offset"))
self._out = Linear(
4096,
class_dim,
weight_attr=ParamAttr(name="fc8_weights"),
bias_attr=ParamAttr(name="fc8_offset"))
def forward(self, inputs):
x = self._conv_block_1(inputs)
x = self._conv_block_2(x)
x = self._conv_block_3(x)
x = self._conv_block_4(x)
x = self._conv_block_5(x)
x = paddle.flatten(x, start_axis=1, stop_axis=-1)
x = self._fc1(x)
2020-09-14 01:11:10 +08:00
x = F.relu(x)
2020-06-29 12:02:41 +08:00
x = self._drop(x)
x = self._fc2(x)
2020-09-14 01:11:10 +08:00
x = F.relu(x)
2020-06-29 12:02:41 +08:00
x = self._drop(x)
x = self._out(x)
return x
2020-04-09 02:16:30 +08:00
2020-09-14 01:11:10 +08:00
2020-06-29 12:02:41 +08:00
def VGG11(**args):
model = VGGNet(layers=11, **args)
2020-09-14 01:11:10 +08:00
return model
2020-04-09 02:16:30 +08:00
2020-06-29 12:02:41 +08:00
def VGG13(**args):
model = VGGNet(layers=13, **args)
2020-04-09 02:16:30 +08:00
return model
2020-09-14 01:11:10 +08:00
2020-06-29 12:02:41 +08:00
def VGG16(**args):
model = VGGNet(layers=16, **args)
2020-09-14 01:11:10 +08:00
return model
2020-04-09 02:16:30 +08:00
2020-06-29 12:02:41 +08:00
def VGG19(**args):
model = VGGNet(layers=19, **args)
2020-09-14 01:11:10 +08:00
return model