153 lines
4.8 KiB
Python
153 lines
4.8 KiB
Python
|
import paddle
|
||
|
from paddle import ParamAttr
|
||
|
import paddle.nn as nn
|
||
|
import paddle.nn.functional as F
|
||
|
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
|
||
|
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
|
||
|
|
||
|
__all__ = ["VGG11", "VGG13", "VGG16", "VGG19"]
|
||
|
|
||
|
|
||
|
class ConvBlock(nn.Layer):
|
||
|
def __init__(self, input_channels, output_channels, groups, name=None):
|
||
|
super(ConvBlock, self).__init__()
|
||
|
|
||
|
self.groups = groups
|
||
|
self._conv_1 = Conv2D(
|
||
|
in_channels=input_channels,
|
||
|
out_channels=output_channels,
|
||
|
kernel_size=3,
|
||
|
stride=1,
|
||
|
padding=1,
|
||
|
weight_attr=ParamAttr(name=name + "1_weights"),
|
||
|
bias_attr=False)
|
||
|
if groups == 2 or groups == 3 or groups == 4:
|
||
|
self._conv_2 = Conv2D(
|
||
|
in_channels=output_channels,
|
||
|
out_channels=output_channels,
|
||
|
kernel_size=3,
|
||
|
stride=1,
|
||
|
padding=1,
|
||
|
weight_attr=ParamAttr(name=name + "2_weights"),
|
||
|
bias_attr=False)
|
||
|
if groups == 3 or groups == 4:
|
||
|
self._conv_3 = Conv2D(
|
||
|
in_channels=output_channels,
|
||
|
out_channels=output_channels,
|
||
|
kernel_size=3,
|
||
|
stride=1,
|
||
|
padding=1,
|
||
|
weight_attr=ParamAttr(name=name + "3_weights"),
|
||
|
bias_attr=False)
|
||
|
if groups == 4:
|
||
|
self._conv_4 = Conv2D(
|
||
|
in_channels=output_channels,
|
||
|
out_channels=output_channels,
|
||
|
kernel_size=3,
|
||
|
stride=1,
|
||
|
padding=1,
|
||
|
weight_attr=ParamAttr(name=name + "4_weights"),
|
||
|
bias_attr=False)
|
||
|
|
||
|
self._pool = MaxPool2D(kernel_size=2, stride=2, padding=0)
|
||
|
|
||
|
def forward(self, inputs):
|
||
|
x = self._conv_1(inputs)
|
||
|
x = F.relu(x)
|
||
|
if self.groups == 2 or self.groups == 3 or self.groups == 4:
|
||
|
x = self._conv_2(x)
|
||
|
x = F.relu(x)
|
||
|
if self.groups == 3 or self.groups == 4:
|
||
|
x = self._conv_3(x)
|
||
|
x = F.relu(x)
|
||
|
if self.groups == 4:
|
||
|
x = self._conv_4(x)
|
||
|
x = F.relu(x)
|
||
|
x = self._pool(x)
|
||
|
return x
|
||
|
|
||
|
|
||
|
class VGGNet(nn.Layer):
|
||
|
def __init__(self, layers=11, stop_grad_layers=0, class_dim=1000):
|
||
|
super(VGGNet, self).__init__()
|
||
|
|
||
|
self.layers = layers
|
||
|
self.stop_grad_layers = stop_grad_layers
|
||
|
self.vgg_configure = {
|
||
|
11: [1, 1, 2, 2, 2],
|
||
|
13: [2, 2, 2, 2, 2],
|
||
|
16: [2, 2, 3, 3, 3],
|
||
|
19: [2, 2, 4, 4, 4]
|
||
|
}
|
||
|
assert self.layers in self.vgg_configure.keys(), \
|
||
|
"supported layers are {} but input layer is {}".format(
|
||
|
self.vgg_configure.keys(), layers)
|
||
|
self.groups = self.vgg_configure[self.layers]
|
||
|
|
||
|
self._conv_block_1 = ConvBlock(3, 64, self.groups[0], name="conv1_")
|
||
|
self._conv_block_2 = ConvBlock(64, 128, self.groups[1], name="conv2_")
|
||
|
self._conv_block_3 = ConvBlock(128, 256, self.groups[2], name="conv3_")
|
||
|
self._conv_block_4 = ConvBlock(256, 512, self.groups[3], name="conv4_")
|
||
|
self._conv_block_5 = ConvBlock(512, 512, self.groups[4], name="conv5_")
|
||
|
|
||
|
for idx, block in enumerate([
|
||
|
self._conv_block_1, self._conv_block_2, self._conv_block_3,
|
||
|
self._conv_block_4, self._conv_block_5
|
||
|
]):
|
||
|
if self.stop_grad_layers >= idx + 1:
|
||
|
for param in block.parameters():
|
||
|
param.trainable = False
|
||
|
|
||
|
self._drop = Dropout(p=0.5, mode="downscale_in_infer")
|
||
|
self._fc1 = Linear(
|
||
|
7 * 7 * 512,
|
||
|
4096,
|
||
|
weight_attr=ParamAttr(name="fc6_weights"),
|
||
|
bias_attr=ParamAttr(name="fc6_offset"))
|
||
|
self._fc2 = Linear(
|
||
|
4096,
|
||
|
4096,
|
||
|
weight_attr=ParamAttr(name="fc7_weights"),
|
||
|
bias_attr=ParamAttr(name="fc7_offset"))
|
||
|
self._out = Linear(
|
||
|
4096,
|
||
|
class_dim,
|
||
|
weight_attr=ParamAttr(name="fc8_weights"),
|
||
|
bias_attr=ParamAttr(name="fc8_offset"))
|
||
|
|
||
|
def forward(self, inputs):
|
||
|
x = self._conv_block_1(inputs)
|
||
|
x = self._conv_block_2(x)
|
||
|
x = self._conv_block_3(x)
|
||
|
x = self._conv_block_4(x)
|
||
|
x = self._conv_block_5(x)
|
||
|
x = paddle.flatten(x, start_axis=1, stop_axis=-1)
|
||
|
x = self._fc1(x)
|
||
|
x = F.relu(x)
|
||
|
x = self._drop(x)
|
||
|
x = self._fc2(x)
|
||
|
x = F.relu(x)
|
||
|
x = self._drop(x)
|
||
|
x = self._out(x)
|
||
|
return x
|
||
|
|
||
|
|
||
|
def VGG11(**args):
|
||
|
model = VGGNet(layers=11, **args)
|
||
|
return model
|
||
|
|
||
|
|
||
|
def VGG13(**args):
|
||
|
model = VGGNet(layers=13, **args)
|
||
|
return model
|
||
|
|
||
|
|
||
|
def VGG16(**args):
|
||
|
model = VGGNet(layers=16, **args)
|
||
|
return model
|
||
|
|
||
|
|
||
|
def VGG19(**args):
|
||
|
model = VGGNet(layers=19, **args)
|
||
|
return model
|