PaddleClas/ppcls/engine/evaluation/classification.py

203 lines
8.2 KiB
Python
Raw Normal View History

2021-08-22 23:10:23 +08:00
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import time
import platform
import paddle
from ...utils.misc import AverageMeter
from ...utils import logger
from ...data import build_dataloader
from ...loss import build_loss
from ...metric import build_metrics
class ClassEval(object):
def __init__(self, config, mode, model):
self.config = config
self.model = model
self.use_dali = self.config["Global"].get("use_dali", False)
self.eval_metric_func = build_metrics(config, "eval")
self.eval_dataloader = build_dataloader(config, "eval")
self.eval_loss_func = build_loss(config, "eval")
self.output_info = dict()
@paddle.no_grad()
def __call__(self, epoch_id=0):
self.model.eval()
if hasattr(self.eval_metric_func, "reset"):
self.eval_metric_func.reset()
time_info = {
"batch_cost": AverageMeter(
"batch_cost", '.5f', postfix=" s,"),
"reader_cost": AverageMeter(
"reader_cost", ".5f", postfix=" s,"),
}
print_batch_step = self.config["Global"]["print_batch_step"]
tic = time.time()
total_samples = self.eval_dataloader["Eval"].total_samples
accum_samples = 0
max_iter = self.eval_dataloader["Eval"].max_iter
for iter_id, batch in enumerate(self.eval_dataloader["Eval"]):
if iter_id >= max_iter:
break
if iter_id == 5:
for key in time_info:
time_info[key].reset()
time_info["reader_cost"].update(time.time() - tic)
batch_size = batch[0].shape[0]
batch[0] = paddle.to_tensor(batch[0])
if not self.config["Global"].get("use_multilabel", False):
batch[1] = batch[1].reshape([-1, 1]).astype("int64")
# image input
# if engine.amp and engine.amp_eval:
# with paddle.amp.auto_cast(
# custom_black_list={
# "flatten_contiguous_range", "greater_than"
# },
# level=engine.amp_level):
# out = engine.model(batch)
# else:
# out = self.model(batch)
out = self.model(batch)
# just for DistributedBatchSampler issue: repeat sampling
current_samples = batch_size * paddle.distributed.get_world_size()
accum_samples += current_samples
if isinstance(out, dict) and "Student" in out:
out = out["Student"]
if isinstance(out, dict) and "logits" in out:
out = out["logits"]
# gather Tensor when distributed
if paddle.distributed.get_world_size() > 1:
label_list = []
device_id = paddle.distributed.ParallelEnv().device_id
label = batch[1].cuda(device_id) if self.config["Global"][
"device"] == "gpu" else batch[1]
paddle.distributed.all_gather(label_list, label)
labels = paddle.concat(label_list, 0)
if isinstance(out, list):
preds = []
for x in out:
pred_list = []
paddle.distributed.all_gather(pred_list, x)
pred_x = paddle.concat(pred_list, 0)
preds.append(pred_x)
2022-07-06 20:38:40 +08:00
else:
pred_list = []
paddle.distributed.all_gather(pred_list, out)
preds = paddle.concat(pred_list, 0)
if accum_samples > total_samples and not self.use_dali:
if isinstance(preds, list):
preds = [
pred[:total_samples + current_samples -
accum_samples] for pred in preds
]
else:
preds = preds[:total_samples + current_samples -
accum_samples]
labels = labels[:total_samples + current_samples -
accum_samples]
current_samples = total_samples + current_samples - accum_samples
2021-10-20 19:22:37 +08:00
else:
labels = batch[1]
preds = out
# calc loss
if self.eval_loss_func is not None:
# if self.amp and self.amp_eval:
# with paddle.amp.auto_cast(
# custom_black_list={
# "flatten_contiguous_range", "greater_than"
# },
# level=engine.amp_level):
# loss_dict = engine.eval_loss_func(preds, labels)
# else:
loss_dict = self.eval_loss_func(preds, labels)
for key in loss_dict:
if key not in self.output_info:
self.output_info[key] = AverageMeter(key, '7.5f')
self.output_info[key].update(
float(loss_dict[key]), current_samples)
# calc metric
if self.eval_metric_func is not None:
self.eval_metric_func(preds, labels)
time_info["batch_cost"].update(time.time() - tic)
if iter_id % print_batch_step == 0:
time_msg = "s, ".join([
"{}: {:.5f}".format(key, time_info[key].avg)
for key in time_info
])
2021-08-22 23:10:23 +08:00
ips_msg = "ips: {:.5f} images/sec".format(
batch_size / time_info["batch_cost"].avg)
2021-08-22 23:10:23 +08:00
if "ATTRMetric" in self.config["Metric"]["Eval"][0]:
metric_msg = ""
else:
metric_msg = ", ".join([
"{}: {:.5f}".format(key, self.output_info[key].val)
for key in self.output_info
])
metric_msg += ", {}".format(self.eval_metric_func.avg_info)
logger.info("[Eval][Epoch {}][Iter: {}/{}]{}, {}, {}".format(
epoch_id, iter_id, max_iter, metric_msg, time_msg,
ips_msg))
tic = time.time()
if self.use_dali:
self.eval_dataloader["Eval"].reset()
if "ATTRMetric" in self.config["Metric"]["Eval"][0]:
metric_msg = ", ".join([
"evalres: ma: {:.5f} label_f1: {:.5f} label_pos_recall: {:.5f} label_neg_recall: {:.5f} instance_f1: {:.5f} instance_acc: {:.5f} instance_prec: {:.5f} instance_recall: {:.5f}".
format(*self.eval_metric_func.attr_res())
])
logger.info("[Eval][Epoch {}][Avg]{}".format(epoch_id, metric_msg))
2021-08-22 23:10:23 +08:00
# do not try to save best eval.model
if self.eval_metric_func is None:
return -1
# return 1st metric in the dict
return self.eval_metric_func.attr_res()[0]
else:
metric_msg = ", ".join([
"{}: {:.5f}".format(key, self.output_info[key].avg)
for key in self.output_info
])
metric_msg += ", {}".format(self.eval_metric_func.avg_info)
logger.info("[Eval][Epoch {}][Avg]{}".format(epoch_id, metric_msg))
# do not try to save best eval.model
if self.eval_metric_func is None:
return -1
# return 1st metric in the dict
return self.eval_metric_func.avg
self.model.train()
return eval_result