2021-10-15 00:23:48 +08:00
|
|
|
|
# 模型服务化部署
|
2021-11-02 15:59:20 +08:00
|
|
|
|
- [简介](#简介)
|
|
|
|
|
- [Serving安装](#Serving安装)
|
|
|
|
|
- [图像分类服务部署](#图像分类服务部署)
|
|
|
|
|
- [图像识别服务部署](#图像识别服务部署)
|
2021-11-02 16:12:04 +08:00
|
|
|
|
- [FAQ](#FAQ)
|
2021-10-15 00:23:48 +08:00
|
|
|
|
|
2021-11-02 15:59:20 +08:00
|
|
|
|
<a name="简介"></a>
|
2021-10-15 00:23:48 +08:00
|
|
|
|
## 1. 简介
|
|
|
|
|
[Paddle Serving](https://github.com/PaddlePaddle/Serving) 旨在帮助深度学习开发者轻松部署在线预测服务,支持一键部署工业级的服务能力、客户端和服务端之间高并发和高效通信、并支持多种编程语言开发客户端。
|
|
|
|
|
|
|
|
|
|
该部分以 HTTP 预测服务部署为例,介绍怎样在 PaddleClas 中使用 PaddleServing 部署模型服务。
|
|
|
|
|
|
2021-11-02 15:59:20 +08:00
|
|
|
|
<a name="Serving安装"></a>
|
2021-10-15 00:23:48 +08:00
|
|
|
|
## 2. Serving安装
|
|
|
|
|
|
|
|
|
|
Serving 官网推荐使用 docker 安装并部署 Serving 环境。首先需要拉取 docker 环境并创建基于 Serving 的 docker。
|
|
|
|
|
|
|
|
|
|
```shell
|
|
|
|
|
nvidia-docker pull hub.baidubce.com/paddlepaddle/serving:0.2.0-gpu
|
|
|
|
|
nvidia-docker run -p 9292:9292 --name test -dit hub.baidubce.com/paddlepaddle/serving:0.2.0-gpu
|
|
|
|
|
nvidia-docker exec -it test bash
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
进入 docker 后,需要安装 Serving 相关的 python 包。
|
|
|
|
|
|
|
|
|
|
```shell
|
|
|
|
|
pip install paddlepaddle-gpu
|
|
|
|
|
pip install paddle-serving-client
|
|
|
|
|
pip install paddle-serving-server-gpu
|
2021-11-02 15:46:39 +08:00
|
|
|
|
pip install paddle-serving-app
|
2021-10-15 00:23:48 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
* 如果安装速度太慢,可以通过 `-i https://pypi.tuna.tsinghua.edu.cn/simple` 更换源,加速安装过程。
|
|
|
|
|
|
|
|
|
|
* 如果希望部署 CPU 服务,可以安装 serving-server 的 cpu 版本,安装命令如下。
|
|
|
|
|
|
|
|
|
|
```shell
|
|
|
|
|
pip install paddle-serving-server
|
|
|
|
|
```
|
2021-11-02 15:59:20 +08:00
|
|
|
|
<a name="图像分类服务部署"></a>
|
2021-11-02 15:46:39 +08:00
|
|
|
|
## 3. 图像分类服务部署
|
|
|
|
|
### 3.1 模型转换
|
|
|
|
|
使用PaddleServing做服务化部署时,需要将保存的inference模型转换为Serving模型。下面以经典的ResNet50_vd模型为例,介绍如何部署图像分类服务。
|
2021-11-02 15:52:02 +08:00
|
|
|
|
- 进入工作目录:
|
2021-10-15 00:23:48 +08:00
|
|
|
|
```shell
|
2021-11-02 15:46:39 +08:00
|
|
|
|
cd deploy/paddleserving
|
2021-10-15 00:23:48 +08:00
|
|
|
|
```
|
2021-11-02 15:52:02 +08:00
|
|
|
|
- 下载ResNet50_vd的inference模型:
|
2021-10-15 00:23:48 +08:00
|
|
|
|
```shell
|
2021-11-02 15:46:39 +08:00
|
|
|
|
# 下载并解压ResNet50_vd模型
|
|
|
|
|
wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet50_vd_infer.tar && tar xf ResNet50_vd_infer.tar
|
2021-10-15 00:23:48 +08:00
|
|
|
|
```
|
2021-11-02 15:52:02 +08:00
|
|
|
|
- 用paddle_serving_client把下载的inference模型转换成易于Server部署的模型格式:
|
2021-11-02 15:46:39 +08:00
|
|
|
|
```
|
|
|
|
|
# 转换ResNet50_vd模型
|
|
|
|
|
python3 -m paddle_serving_client.convert --dirname ./ResNet50_vd_infer/ \
|
|
|
|
|
--model_filename inference.pdmodel \
|
|
|
|
|
--params_filename inference.pdiparams \
|
|
|
|
|
--serving_server ./ResNet50_vd_serving/ \
|
|
|
|
|
--serving_client ./ResNet50_vd_client/
|
|
|
|
|
```
|
|
|
|
|
ResNet50_vd推理模型转换完成后,会在当前文件夹多出`ResNet50_vd_serving` 和`ResNet50_vd_client`的文件夹,具备如下格式:
|
|
|
|
|
```
|
|
|
|
|
|- ResNet50_vd_client/
|
|
|
|
|
|- __model__
|
|
|
|
|
|- __params__
|
|
|
|
|
|- serving_server_conf.prototxt
|
|
|
|
|
|- serving_server_conf.stream.prototxt
|
|
|
|
|
|- ResNet50_vd_client
|
|
|
|
|
|- serving_client_conf.prototxt
|
|
|
|
|
|- serving_client_conf.stream.prototxt
|
|
|
|
|
```
|
2021-11-02 15:52:02 +08:00
|
|
|
|
得到模型文件之后,需要修改serving_server_conf.prototxt中的alias名字: 将`feed_var`中的`alias_name`改为`image`, 将`fetch_var`中的`alias_name`改为`prediction`
|
|
|
|
|
|
|
|
|
|
**备注**: Serving为了兼容不同模型的部署,提供了输入输出重命名的功能。这样,不同的模型在推理部署时,只需要修改配置文件的alias_name即可,无需修改代码即可完成推理部署。
|
2021-11-02 15:46:39 +08:00
|
|
|
|
修改后的serving_server_conf.prototxt如下所示:
|
|
|
|
|
```
|
|
|
|
|
feed_var {
|
|
|
|
|
name: "inputs"
|
|
|
|
|
alias_name: "image"
|
|
|
|
|
is_lod_tensor: false
|
|
|
|
|
feed_type: 1
|
|
|
|
|
shape: 3
|
|
|
|
|
shape: 224
|
|
|
|
|
shape: 224
|
|
|
|
|
}
|
|
|
|
|
fetch_var {
|
|
|
|
|
name: "save_infer_model/scale_0.tmp_1"
|
|
|
|
|
alias_name: "prediction"
|
|
|
|
|
is_lod_tensor: true
|
|
|
|
|
fetch_type: 1
|
|
|
|
|
shape: -1
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
### 3.2 服务部署和请求
|
|
|
|
|
paddleserving目录包含了启动pipeline服务和发送预测请求的代码,包括:
|
|
|
|
|
```shell
|
|
|
|
|
__init__.py
|
|
|
|
|
config.yml # 启动服务的配置文件
|
|
|
|
|
pipeline_http_client.py # http方式发送pipeline预测请求的脚本
|
|
|
|
|
pipeline_rpc_client.py # rpc方式发送pipeline预测请求的脚本
|
|
|
|
|
classification_web_service.py # 启动pipeline服务端的脚本
|
2021-10-15 00:23:48 +08:00
|
|
|
|
```
|
2021-11-02 16:04:01 +08:00
|
|
|
|
|
2021-11-02 15:46:39 +08:00
|
|
|
|
- 启动服务:
|
|
|
|
|
```shell
|
|
|
|
|
# 启动服务,运行日志保存在log.txt
|
|
|
|
|
python3 classification_web_service.py &>log.txt &
|
|
|
|
|
```
|
|
|
|
|
成功启动服务后,log.txt中会打印类似如下日志
|
|
|
|
|

|
2021-11-02 16:04:01 +08:00
|
|
|
|
|
2021-11-02 15:52:02 +08:00
|
|
|
|
- 发送请求:
|
2021-11-02 15:46:39 +08:00
|
|
|
|
```shell
|
|
|
|
|
# 发送服务请求
|
|
|
|
|
python3 pipeline_http_client.py
|
2021-10-15 00:23:48 +08:00
|
|
|
|
```
|
2021-11-02 15:46:39 +08:00
|
|
|
|
成功运行后,模型预测的结果会打印在cmd窗口中,结果示例为:
|
|
|
|
|

|
2021-10-15 00:23:48 +08:00
|
|
|
|
|
2021-11-02 15:59:20 +08:00
|
|
|
|
<a name="图像识别服务部署"></a>
|
|
|
|
|
## 4.图像识别服务部署
|
2021-11-02 17:01:09 +08:00
|
|
|
|
使用PaddleServing做服务化部署时,需要将保存的inference模型转换为Serving模型。 下面以PP-ShiTu中的超轻量商品识别模型为例,介绍图像识别服务的部署。
|
2021-11-02 16:36:58 +08:00
|
|
|
|
## 4.1 模型转换
|
2021-11-02 16:39:35 +08:00
|
|
|
|
- 下载通用检测inference模型和商品识别inference模型
|
2021-11-02 16:36:58 +08:00
|
|
|
|
```
|
|
|
|
|
cd deploy
|
|
|
|
|
# 下载并解压商品识别模型
|
|
|
|
|
wget -P models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/general_PPLCNet_x2_5_lite_v1.0_infer.tar
|
|
|
|
|
cd models
|
|
|
|
|
tar -xf general_PPLCNet_x2_5_lite_v1.0_infer.tar
|
2021-11-02 16:39:35 +08:00
|
|
|
|
# 下载并解压通用检测模型
|
2021-11-02 16:36:58 +08:00
|
|
|
|
wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/picodet_PPLCNet_x2_5_mainbody_lite_v1.0_infer.tar
|
|
|
|
|
tar -xf picodet_PPLCNet_x2_5_mainbody_lite_v1.0_infer.tar
|
|
|
|
|
```
|
2021-11-02 17:01:09 +08:00
|
|
|
|
- 转换商品识别inference模型为Serving模型:
|
2021-11-02 16:36:58 +08:00
|
|
|
|
```
|
|
|
|
|
# 转换商品识别模型
|
|
|
|
|
python3 -m paddle_serving_client.convert --dirname ./general_PPLCNet_x2_5_lite_v1.0_infer/ \
|
|
|
|
|
--model_filename inference.pdmodel \
|
|
|
|
|
--params_filename inference.pdiparams \
|
|
|
|
|
--serving_server ./general_PPLCNet_x2_5_lite_v1.0_serving/ \
|
|
|
|
|
--serving_client ./general_PPLCNet_x2_5_lite_v1.0_client/
|
|
|
|
|
```
|
2021-11-02 17:01:09 +08:00
|
|
|
|
商品识别推理模型转换完成后,会在当前文件夹多出`general_PPLCNet_x2_5_lite_v1.0_serving/` 和`general_PPLCNet_x2_5_lite_v1.0_serving/`的文件夹。修改`general_PPLCNet_x2_5_lite_v1.0_serving/`目录下的serving_server_conf.prototxt中的alias名字: 将`fetch_var`中的`alias_name`改为`features`。
|
2021-11-02 16:36:58 +08:00
|
|
|
|
修改后的serving_server_conf.prototxt内容如下:
|
|
|
|
|
```
|
|
|
|
|
feed_var {
|
|
|
|
|
name: "x"
|
|
|
|
|
alias_name: "x"
|
|
|
|
|
is_lod_tensor: false
|
|
|
|
|
feed_type: 1
|
|
|
|
|
shape: 3
|
|
|
|
|
shape: 224
|
|
|
|
|
shape: 224
|
|
|
|
|
}
|
|
|
|
|
fetch_var {
|
|
|
|
|
name: "save_infer_model/scale_0.tmp_1"
|
|
|
|
|
alias_name: "features"
|
|
|
|
|
is_lod_tensor: true
|
|
|
|
|
fetch_type: 1
|
|
|
|
|
shape: -1
|
|
|
|
|
}
|
|
|
|
|
```
|
2021-11-02 17:01:09 +08:00
|
|
|
|
- 转换通用检测inference模型为Serving模型:
|
2021-11-02 16:36:58 +08:00
|
|
|
|
```
|
|
|
|
|
# 转换通用检测模型
|
|
|
|
|
python3 -m paddle_serving_client.convert --dirname ./picodet_PPLCNet_x2_5_mainbody_lite_v1.0_infer/ \
|
|
|
|
|
--model_filename inference.pdmodel \
|
|
|
|
|
--params_filename inference.pdiparams \
|
|
|
|
|
--serving_server ./picodet_PPLCNet_x2_5_mainbody_lite_v1.0_serving/ \
|
|
|
|
|
--serving_client ./picodet_PPLCNet_x2_5_mainbody_lite_v1.0_client/
|
|
|
|
|
```
|
|
|
|
|
通用检测inference模型转换完成后,会在当前文件夹多出`picodet_PPLCNet_x2_5_mainbody_lite_v1.0_serving/` 和`picodet_PPLCNet_x2_5_mainbody_lite_v1.0_client/`的文件夹。
|
2021-11-02 17:01:09 +08:00
|
|
|
|
**注意:** 此处不需要修改`picodet_PPLCNet_x2_5_mainbody_lite_v1.0_serving/`目录下的serving_server_conf.prototxt中的alias名字。
|
2021-11-02 16:36:58 +08:00
|
|
|
|
|
|
|
|
|
- 下载并解压已经构建后的商品库index
|
|
|
|
|
```
|
|
|
|
|
cd ../
|
|
|
|
|
wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/data/drink_dataset_v1.0.tar && tar -xf drink_dataset_v1.0.tar
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
## 4.2 服务部署和请求
|
|
|
|
|
**注意:** 识别服务涉及到多个模型,采用PipeLine部署方式。Pipeline部署方式当前不支持windows平台。
|
|
|
|
|
- 进入到工作目录
|
|
|
|
|
```shell
|
|
|
|
|
cd ./deploy/paddleserving/recognition
|
|
|
|
|
```
|
|
|
|
|
paddleserving目录包含启动pipeline服务和发送预测请求的代码,包括:
|
|
|
|
|
```
|
|
|
|
|
__init__.py
|
|
|
|
|
config.yml # 启动服务的配置文件
|
|
|
|
|
pipeline_http_client.py # http方式发送pipeline预测请求的脚本
|
|
|
|
|
pipeline_rpc_client.py # rpc方式发送pipeline预测请求的脚本
|
|
|
|
|
recognition_web_service.py # 启动pipeline服务端的脚本
|
|
|
|
|
```
|
|
|
|
|
- 启动服务:
|
|
|
|
|
```
|
|
|
|
|
# 启动服务,运行日志保存在log.txt
|
|
|
|
|
python3 recognition_web_service.py &>log.txt &
|
|
|
|
|
```
|
|
|
|
|
成功启动服务后,log.txt中会打印类似如下日志
|
2021-11-02 16:39:35 +08:00
|
|
|
|

|
2021-11-02 16:36:58 +08:00
|
|
|
|
|
|
|
|
|
- 发送请求:
|
|
|
|
|
```
|
|
|
|
|
python3 pipeline_http_client.py
|
|
|
|
|
```
|
|
|
|
|
成功运行后,模型预测的结果会打印在cmd窗口中,结果示例为:
|
2021-11-02 16:39:35 +08:00
|
|
|
|

|
2021-11-02 15:59:20 +08:00
|
|
|
|
|
2021-11-02 16:12:04 +08:00
|
|
|
|
<a name="FAQ"></a>
|
|
|
|
|
## 5.FAQ
|
|
|
|
|
**Q1**: 发送请求后没有结果返回或者提示输出解码报错
|
|
|
|
|
|
|
|
|
|
**A1**: 启动服务和发送请求时不要设置代理,可以在启动服务前和发送请求前关闭代理,关闭代理的命令是:
|
|
|
|
|
```
|
|
|
|
|
unset https_proxy
|
|
|
|
|
unset http_proxy
|
|
|
|
|
```
|
|
|
|
|
|
2021-11-02 16:04:01 +08:00
|
|
|
|
更多的服务部署类型,如 `RPC预测服务` 等,可以参考 Serving 的 github 官网:[https://github.com/PaddlePaddle/Serving/tree/develop/python/examples/imagenet](https://github.com/PaddlePaddle/Serving/tree/develop/python/examples/imagenet)
|