2021-06-15 17:31:23 +08:00
|
|
|
|
# 特征学习
|
|
|
|
|
|
|
|
|
|
此部分主要是针对`RecModel`的训练模式进行说明。`RecModel`的训练模式,主要是为了支持车辆识别(车辆细分类、ReID)、Logo识别、动漫人物识别、商品识别等特征学习的应用。与在`ImageNet`上训练普通的分类网络不同的是,此训练模式,主要有以下特征
|
|
|
|
|
|
|
|
|
|
- 支持对`backbone`的输出进行截断,即支持提取任意中间层的特征信息
|
|
|
|
|
- 支持在`backbone`的feature输出层后,添加可配置的网络层,即`Neck`部分
|
|
|
|
|
- 支持`ArcMargin`等`metric learning` 相关loss函数,提升特征学习能力
|
|
|
|
|
|
|
|
|
|
## yaml文件说明
|
|
|
|
|
|
|
|
|
|
`RecModel`的训练模式与普通分类训练的配置类似,配置文件主要分为以下几个部分:
|
|
|
|
|
|
2021-06-16 11:44:43 +08:00
|
|
|
|
### 1 全局设置部分
|
2021-06-15 17:31:23 +08:00
|
|
|
|
|
|
|
|
|
```yaml
|
|
|
|
|
Global:
|
|
|
|
|
# 如为null则从头开始训练。若指定中间训练保存的状态地址,则继续训练
|
|
|
|
|
checkpoints: null
|
|
|
|
|
# pretrained model路径或者 bool类型
|
|
|
|
|
pretrained_model: null
|
|
|
|
|
# 模型保存路径
|
|
|
|
|
output_dir: "./output/"
|
|
|
|
|
device: "gpu"
|
|
|
|
|
class_num: 30671
|
|
|
|
|
# 保存模型的粒度,每个epoch保存一次
|
|
|
|
|
save_interval: 1
|
|
|
|
|
eval_during_train: True
|
|
|
|
|
eval_interval: 1
|
|
|
|
|
# 训练的epoch数
|
|
|
|
|
epochs: 160
|
|
|
|
|
# log输出频率
|
|
|
|
|
print_batch_step: 10
|
|
|
|
|
# 是否使用visualdl库
|
|
|
|
|
use_visualdl: False
|
|
|
|
|
# used for static mode and model export
|
|
|
|
|
image_shape: [3, 224, 224]
|
|
|
|
|
save_inference_dir: "./inference"
|
|
|
|
|
# 使用retrival的方式进行评测
|
|
|
|
|
eval_mode: "retrieval"
|
|
|
|
|
```
|
|
|
|
|
|
2021-06-16 11:44:43 +08:00
|
|
|
|
### 2 数据部分
|
2021-06-15 17:31:23 +08:00
|
|
|
|
|
|
|
|
|
```yaml
|
|
|
|
|
DataLoader:
|
|
|
|
|
Train:
|
|
|
|
|
dataset:
|
|
|
|
|
# 具体使用的Dataset的的名称
|
|
|
|
|
name: "VeriWild"
|
|
|
|
|
# 使用此数据集的具体参数
|
2021-06-16 11:44:43 +08:00
|
|
|
|
image_root: "./dataset/VeRI-Wild/images/"
|
|
|
|
|
cls_label_path: "./dataset/VeRI-Wild/train_test_split/train_list_start0.txt"
|
2021-06-15 17:31:23 +08:00
|
|
|
|
# 图像增广策略:ResizeImage、RandFlipImage等
|
|
|
|
|
transform_ops:
|
|
|
|
|
- ResizeImage:
|
|
|
|
|
size: 224
|
|
|
|
|
- RandFlipImage:
|
|
|
|
|
flip_code: 1
|
|
|
|
|
- AugMix:
|
|
|
|
|
prob: 0.5
|
|
|
|
|
- NormalizeImage:
|
|
|
|
|
scale: 0.00392157
|
|
|
|
|
mean: [0.485, 0.456, 0.406]
|
|
|
|
|
std: [0.229, 0.224, 0.225]
|
|
|
|
|
order: ''
|
|
|
|
|
- RandomErasing:
|
|
|
|
|
EPSILON: 0.5
|
|
|
|
|
sl: 0.02
|
|
|
|
|
sh: 0.4
|
|
|
|
|
r1: 0.3
|
|
|
|
|
mean: [0., 0., 0.]
|
|
|
|
|
sampler:
|
|
|
|
|
name: DistributedRandomIdentitySampler
|
|
|
|
|
batch_size: 128
|
|
|
|
|
num_instances: 2
|
|
|
|
|
drop_last: False
|
|
|
|
|
shuffle: True
|
|
|
|
|
loader:
|
|
|
|
|
num_workers: 6
|
|
|
|
|
use_shared_memory: False
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
`val dataset`设置与`train dataset`除图像增广策略外,设置基本一致
|
|
|
|
|
|
2021-06-16 11:44:43 +08:00
|
|
|
|
### 3 Backbone的具体设置
|
2021-06-15 17:31:23 +08:00
|
|
|
|
|
|
|
|
|
```yaml
|
|
|
|
|
Arch:
|
|
|
|
|
# 使用RecModel模式进行训练
|
|
|
|
|
name: "RecModel"
|
|
|
|
|
# 导出inference model的具体配置
|
|
|
|
|
infer_output_key: "features"
|
|
|
|
|
infer_add_softmax: False
|
|
|
|
|
# 使用的Backbone
|
|
|
|
|
Backbone:
|
|
|
|
|
name: "ResNet50"
|
|
|
|
|
pretrained: True
|
|
|
|
|
# 使用此层作为Backbone的feature输出,name为ResNet50的full_name
|
|
|
|
|
BackboneStopLayer:
|
|
|
|
|
name: "adaptive_avg_pool2d_0"
|
|
|
|
|
# Backbone的基础上,新增网络层。此模型添加1x1的卷积层(embedding)
|
|
|
|
|
Neck:
|
|
|
|
|
name: "VehicleNeck"
|
|
|
|
|
in_channels: 2048
|
|
|
|
|
out_channels: 512
|
|
|
|
|
# 增加ArcMargin, 即ArcLoss的具体实现
|
|
|
|
|
Head:
|
|
|
|
|
name: "ArcMargin"
|
|
|
|
|
embedding_size: 512
|
|
|
|
|
class_num: 431
|
|
|
|
|
margin: 0.15
|
|
|
|
|
scale: 32
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
`Neck`部分为在`bacbone`基础上,添加的网络层,可根据需求添加。 如在ReID任务中,添加一个输出长度为512的`embedding`层,可由此部分实现。需注意的是,`Neck`部分需对应好`BackboneStopLayer`层的输出维度。一般来说,`Neck`部分为网络的最终特征输出层。
|
|
|
|
|
|
|
|
|
|
`Head`部分主要是为了支持`metric learning`等具体loss函数,如`ArcMargin`([ArcFace Loss](https://arxiv.org/abs/1801.07698)的fc层的具体实现),在完成训练后,一般将此部分剔除。
|
|
|
|
|
|
2021-06-16 11:44:43 +08:00
|
|
|
|
### 4 Loss的设置
|
2021-06-15 17:31:23 +08:00
|
|
|
|
|
|
|
|
|
```yaml
|
|
|
|
|
Loss:
|
|
|
|
|
Train:
|
|
|
|
|
- CELoss:
|
|
|
|
|
weight: 1.0
|
|
|
|
|
- SupConLoss:
|
|
|
|
|
weight: 1.0
|
|
|
|
|
# SupConLoss的具体参数
|
|
|
|
|
views: 2
|
|
|
|
|
Eval:
|
|
|
|
|
- CELoss:
|
|
|
|
|
weight: 1.0
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
训练时同时使用`CELoss`和`SupConLoss`,权重比例为`1:1`,测试时只使用`CELoss`
|
|
|
|
|
|
2021-06-16 11:44:43 +08:00
|
|
|
|
### 5 优化器设置
|
2021-06-15 17:31:23 +08:00
|
|
|
|
|
|
|
|
|
```yaml
|
|
|
|
|
Optimizer:
|
|
|
|
|
# 使用的优化器名称
|
|
|
|
|
name: Momentum
|
|
|
|
|
# 优化器具体参数
|
|
|
|
|
momentum: 0.9
|
|
|
|
|
lr:
|
|
|
|
|
# 使用的学习率调节具体名称
|
|
|
|
|
name: MultiStepDecay
|
|
|
|
|
# 学习率调节算法具体参数
|
|
|
|
|
learning_rate: 0.01
|
|
|
|
|
milestones: [30, 60, 70, 80, 90, 100, 120, 140]
|
|
|
|
|
gamma: 0.5
|
|
|
|
|
verbose: False
|
|
|
|
|
last_epoch: -1
|
|
|
|
|
regularizer:
|
|
|
|
|
name: 'L2'
|
|
|
|
|
coeff: 0.0005
|
|
|
|
|
```
|
|
|
|
|
|
2021-06-16 11:44:43 +08:00
|
|
|
|
### 6 Eval Metric设置
|
2021-06-15 17:31:23 +08:00
|
|
|
|
|
|
|
|
|
```yaml
|
|
|
|
|
Metric:
|
|
|
|
|
Eval:
|
|
|
|
|
# 使用Recallk和mAP两种评价指标
|
|
|
|
|
- Recallk:
|
|
|
|
|
topk: [1, 5]
|
|
|
|
|
- mAP: {}
|
|
|
|
|
```
|