PaddleClas/ppcls/metric/metrics.py

158 lines
5.1 KiB
Python
Raw Normal View History

2021-06-04 22:19:04 +08:00
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import paddle
import paddle.nn as nn
2021-06-05 17:49:36 +08:00
from functools import lru_cache
2021-06-04 22:19:04 +08:00
# TODO: fix the format
2021-06-04 22:56:12 +08:00
class TopkAcc(nn.Layer):
2021-06-04 22:19:04 +08:00
def __init__(self, topk=(1, 5)):
super().__init__()
assert isinstance(topk, (int, list, tuple))
if isinstance(topk, int):
topk = [topk]
self.topk = topk
def forward(self, x, label):
if isinstance(x, dict):
x = x["logits"]
metric_dict = dict()
for k in self.topk:
metric_dict["top{}".format(k)] = paddle.metric.accuracy(
x, label, k=k)
return metric_dict
class mAP(nn.Layer):
2021-06-05 18:33:50 +08:00
def __init__(self):
2021-06-04 22:19:04 +08:00
super().__init__()
def forward(self, similarities_matrix, query_img_id, gallery_img_id):
metric_dict = dict()
2021-06-05 17:49:36 +08:00
_, all_AP, _ = get_metrics(similarities_matrix, query_img_id,
gallery_img_id)
2021-06-04 22:19:04 +08:00
mAP = np.mean(all_AP)
2021-06-05 18:33:50 +08:00
metric_dict["mAP"] = mAP
2021-06-04 22:19:04 +08:00
return metric_dict
class mINP(nn.Layer):
2021-06-05 18:33:50 +08:00
def __init__(self):
2021-06-04 22:19:04 +08:00
super().__init__()
def forward(self, similarities_matrix, query_img_id, gallery_img_id):
metric_dict = dict()
2021-06-05 17:49:36 +08:00
_, _, all_INP = get_metrics(similarities_matrix, query_img_id,
gallery_img_id)
2021-06-04 22:19:04 +08:00
mINP = np.mean(all_INP)
2021-06-05 18:33:50 +08:00
metric_dict["mINP"] = mINP
2021-06-04 22:19:04 +08:00
return metric_dict
class Recallk(nn.Layer):
2021-06-05 17:49:36 +08:00
def __init__(self, topk=(1, 5)):
2021-06-04 22:19:04 +08:00
super().__init__()
2021-06-10 10:39:50 +08:00
assert isinstance(topk, (int, list, tuple))
2021-06-04 22:19:04 +08:00
if isinstance(topk, int):
topk = [topk]
self.topk = topk
2021-06-05 17:49:36 +08:00
self.max_rank = max(self.topk) if max(self.topk) > 50 else 50
2021-06-04 22:19:04 +08:00
def forward(self, similarities_matrix, query_img_id, gallery_img_id):
metric_dict = dict()
2021-06-05 17:49:36 +08:00
all_cmc, _, _ = get_metrics(similarities_matrix, query_img_id,
gallery_img_id, self.max_rank)
2021-06-04 22:19:04 +08:00
for k in self.topk:
metric_dict["recall{}".format(k)] = all_cmc[k - 1]
return metric_dict
2021-06-08 11:48:07 +08:00
# retrieval metrics
class RetriMetric(nn.Layer):
def __init__(self, config):
super().__init__()
self.config = config
self.max_rank = 50 #max(self.topk) if max(self.topk) > 50 else 50
def forward(self, similarities_matrix, query_img_id, gallery_img_id):
metric_dict = dict()
all_cmc, all_AP, all_INP = get_metrics(similarities_matrix, query_img_id,
gallery_img_id, self.max_rank)
if "Recallk" in self.config.keys():
topk = self.config['Recallk']['topk']
2021-06-10 10:39:50 +08:00
assert isinstance(topk, (int, list, tuple))
if isinstance(topk, int):
topk = [topk]
2021-06-08 11:48:07 +08:00
for k in topk:
metric_dict["recall{}".format(k)] = all_cmc[k - 1]
if "mAP" in self.config.keys():
mAP = np.mean(all_AP)
metric_dict["mAP"] = mAP
if "mINP" in self.config.keys():
mINP = np.mean(all_INP)
metric_dict["mINP"] = mINP
return metric_dict
2021-06-04 22:19:04 +08:00
2021-06-05 17:49:36 +08:00
@lru_cache()
def get_metrics(similarities_matrix, query_img_id, gallery_img_id,
max_rank=50):
num_q, num_g = similarities_matrix.shape
q_pids = query_img_id.numpy().reshape((query_img_id.shape[0]))
g_pids = gallery_img_id.numpy().reshape((gallery_img_id.shape[0]))
if num_g < max_rank:
max_rank = num_g
print('Note: number of gallery samples is quite small, got {}'.format(
num_g))
indices = paddle.argsort(
similarities_matrix, axis=1, descending=True).numpy()
2021-06-04 22:19:04 +08:00
all_cmc = []
all_AP = []
all_INP = []
num_valid_q = 0
matches = (g_pids[indices] == q_pids[:, np.newaxis]).astype(np.int32)
for q_idx in range(num_q):
2021-06-05 14:23:14 +08:00
raw_cmc = matches[q_idx]
2021-06-04 22:19:04 +08:00
if not np.any(raw_cmc):
continue
cmc = raw_cmc.cumsum()
pos_idx = np.where(raw_cmc == 1)
max_pos_idx = np.max(pos_idx)
inp = cmc[max_pos_idx] / (max_pos_idx + 1.0)
all_INP.append(inp)
cmc[cmc > 1] = 1
all_cmc.append(cmc[:max_rank])
num_valid_q += 1.
num_rel = raw_cmc.sum()
tmp_cmc = raw_cmc.cumsum()
tmp_cmc = [x / (i + 1.) for i, x in enumerate(tmp_cmc)]
tmp_cmc = np.asarray(tmp_cmc) * raw_cmc
AP = tmp_cmc.sum() / num_rel
all_AP.append(AP)
assert num_valid_q > 0, 'Error: all query identities do not appear in gallery'
all_cmc = np.asarray(all_cmc).astype(np.float32)
all_cmc = all_cmc.sum(0) / num_valid_q
return all_cmc, all_AP, all_INP