PaddleClas/tools/train.py

118 lines
3.9 KiB
Python
Raw Normal View History

2020-04-19 19:00:25 +08:00
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
2020-04-09 02:16:30 +08:00
#
2020-04-19 19:00:25 +08:00
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
2020-04-09 02:16:30 +08:00
#
# http://www.apache.org/licenses/LICENSE-2.0
#
2020-04-19 19:00:25 +08:00
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
2020-04-21 00:49:09 +08:00
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
2020-04-09 02:16:30 +08:00
import argparse
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
2020-04-09 02:16:30 +08:00
2020-09-13 14:49:47 +08:00
import paddle
2020-04-09 02:16:30 +08:00
2020-09-15 17:43:19 +08:00
from ppcls.data import Reader
from ppcls.utils.config import get_config
from ppcls.utils.save_load import init_model, save_model
from ppcls.utils import logger
import program
2020-09-29 00:47:22 +08:00
2020-04-09 02:16:30 +08:00
def parse_args():
parser = argparse.ArgumentParser("PaddleClas train script")
parser.add_argument(
'-c',
'--config',
type=str,
2020-04-17 21:03:06 +08:00
default='configs/ResNet/ResNet50.yaml',
2020-04-09 02:16:30 +08:00
help='config file path')
parser.add_argument(
'-o',
'--override',
action='append',
default=[],
help='config options to be overridden')
args = parser.parse_args()
return args
def main(args):
paddle.seed(12345)
2020-11-03 10:08:30 +08:00
2020-04-09 02:16:30 +08:00
config = get_config(args.config, overrides=args.override, show=True)
2020-04-19 17:47:19 +08:00
# assign the place
use_gpu = config.get("use_gpu", True)
place = paddle.set_device('gpu' if use_gpu else 'cpu')
2020-04-09 02:16:30 +08:00
trainer_num = paddle.distributed.get_world_size()
use_data_parallel = trainer_num != 1
2020-07-23 22:23:28 +08:00
config["use_data_parallel"] = use_data_parallel
if config["use_data_parallel"]:
paddle.distributed.init_parallel_env()
2020-09-13 14:18:20 +08:00
net = program.create_model(config.ARCHITECTURE, config.classes_num)
2020-09-15 17:43:19 +08:00
optimizer, lr_scheduler = program.create_optimizer(
2020-09-13 14:18:20 +08:00
config, parameter_list=net.parameters())
if config["use_data_parallel"]:
net = paddle.DataParallel(net)
2020-09-13 14:18:20 +08:00
# load model from checkpoint or pretrained model
init_model(config, net, optimizer)
2020-09-29 00:47:22 +08:00
train_dataloader = Reader(config, 'train', places=place)()
2020-09-13 14:18:20 +08:00
if config.validate:
2020-09-29 00:47:22 +08:00
valid_dataloader = Reader(config, 'valid', places=place)()
2020-09-13 14:18:20 +08:00
2020-10-23 02:18:37 +08:00
last_epoch_id = config.get("last_epoch", -1)
2020-09-13 14:18:20 +08:00
best_top1_acc = 0.0 # best top1 acc record
2020-10-22 14:12:03 +08:00
best_top1_epoch = last_epoch_id
for epoch_id in range(last_epoch_id + 1, config.epochs):
2020-09-13 14:18:20 +08:00
net.train()
# 1. train with train dataset
2020-09-15 17:43:19 +08:00
program.run(train_dataloader, config, net, optimizer, lr_scheduler,
epoch_id, 'train')
2020-09-13 14:18:20 +08:00
# 2. validate with validate dataset
if config.validate and epoch_id % config.valid_interval == 0:
net.eval()
with paddle.no_grad():
top1_acc = program.run(valid_dataloader, config, net, None,
None, epoch_id, 'valid')
if top1_acc > best_top1_acc:
best_top1_acc = top1_acc
best_top1_epoch = epoch_id
2021-02-01 22:24:25 +08:00
model_path = os.path.join(config.model_save_dir,
config.ARCHITECTURE["name"])
save_model(net, optimizer, model_path, "best_model")
message = "The best top1 acc {:.5f}, in epoch: {:d}".format(
best_top1_acc, best_top1_epoch)
2021-02-01 22:24:25 +08:00
logger.info(message)
# 3. save the persistable model
if epoch_id % config.save_interval == 0:
model_path = os.path.join(config.model_save_dir,
config.ARCHITECTURE["name"])
save_model(net, optimizer, model_path, epoch_id)
2020-04-09 02:16:30 +08:00
if __name__ == '__main__':
args = parse_args()
2020-07-23 22:23:28 +08:00
main(args)