PaddleClas/docs/zh_CN/advanced_tutorials/multilabel/multilabel.md

82 lines
2.1 KiB
Markdown
Raw Normal View History

2021-03-30 17:22:57 +08:00
# 多标签分类quick start
基于[NUS-WIDE-SCENE](https://lms.comp.nus.edu.sg/wp-content/uploads/2019/research/nuswide/NUS-WIDE.html)数据集体验多标签分类的训练、评估、预测的过程该数据集是NUS-WIDE数据集的一个子集。请事先参考[安装指南](install.md)配置运行环境和克隆PaddleClas代码。
## 一、数据和模型准备
* 进入PaddleClas目录。
```
cd path_to_PaddleClas
```
* 创建并进入`dataset/NUS-WIDE-SCENE`目录下载并解压NUS-WIDE-SCENE数据集。
```shell
mkdir dataset/NUS-WIDE-SCENE
cd dataset/NUS-WIDE-SCENE
wget https://paddle-imagenet-models-name.bj.bcebos.com/data/NUS-SCENE-dataset.tar
tar -xf NUS-SCENE-dataset.tar
```
* 返回`PaddleClas`根目录
```
cd ../../
```
## 二、环境准备
### 2.1 下载预训练模型
本例展示基于ResNet50_vd模型的多标签分类流程因此首先下载ResNet50_vd的预训练模型
```bash
mkdir pretrained
cd pretrained
wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_pretrained.pdparams
cd ../
```
## 三、模型训练
```shell
export CUDA_VISIBLE_DEVICES=0
python -m paddle.distributed.launch \
--gpus="0" \
tools/train.py \
-c ./configs/quick_start/ResNet50_vd_multilabel.yaml
```
训练10epoch之后验证集最好的正确率应该在0.72左右。
## 四、模型评估
```bash
python tools/eval.py \
-c ./configs/quick_start/ResNet50_vd_multilabel.yaml \
-o pretrained_model="./output/ResNet50_vd/best_model/ppcls" \
-o load_static_weights=False
```
评估指标采用mAP验证集的mAP应该在0.57左右。
## 五、模型预测
```bash
python tools/infer/infer.py \
-i "./dataset/NUS-WIDE-SCENE/NUS-SCENE-dataset/images/0199_434752251.jpg" \
--model ResNet50_vd \
--pretrained_model "./output/ResNet50_vd/best_model/ppcls" \
--use_gpu True \
--load_static_weights False \
--multilabel True \
--class_num 33
```
得到类似下面的输出:
```
class id: 3, probability: 0.6025
class id: 23, probability: 0.5491
class id: 32, probability: 0.7006
```