106 lines
4.0 KiB
Python
106 lines
4.0 KiB
Python
|
from paddle.io import Sampler
|
||
|
import paddle.distributed as dist
|
||
|
|
||
|
import math
|
||
|
import random
|
||
|
import numpy as np
|
||
|
|
||
|
from ppcls import data
|
||
|
|
||
|
class MultiScaleSamplerDDP(Sampler):
|
||
|
def __init__(self, data_source, scales, first_bs, g):
|
||
|
print(scales)
|
||
|
# min. and max. spatial dimensions
|
||
|
self.data_source = data_source
|
||
|
self.n_data_samples = len(self.data_source)
|
||
|
|
||
|
if isinstance(scales[0], tuple):
|
||
|
width_dims = [i[0] for i in scales]
|
||
|
height_dims = [i[1] for i in scales]
|
||
|
elif isinstance(scales[0], int):
|
||
|
width_dims = scales
|
||
|
height_dims = scales
|
||
|
base_im_w = width_dims[0]
|
||
|
base_im_h = height_dims[0]
|
||
|
base_batch_size = first_bs
|
||
|
|
||
|
# Get the GPU and node related information
|
||
|
num_replicas =dist.get_world_size()
|
||
|
rank = dist.get_rank()
|
||
|
# adjust the total samples to avoid batch dropping
|
||
|
num_samples_per_replica = int(math.ceil(self.n_data_samples * 1.0 / num_replicas))
|
||
|
img_indices = [idx for idx in range(self.n_data_samples)]
|
||
|
|
||
|
self.shuffle = False
|
||
|
if is_training:
|
||
|
# compute the spatial dimensions and corresponding batch size
|
||
|
# ImageNet models down-sample images by a factor of 32.
|
||
|
# Ensure that width and height dimensions are multiples are multiple of 32.
|
||
|
width_dims = [int((w // 32) * 32) for w in width_dims]
|
||
|
height_dims = [int((h // 32) * 32) for h in height_dims]
|
||
|
|
||
|
img_batch_pairs = list()
|
||
|
base_elements = base_im_w * base_im_h * base_batch_size
|
||
|
for (h, w) in zip(height_dims, width_dims):
|
||
|
batch_size = int(max(1, (base_elements / (h * w))))
|
||
|
img_batch_pairs.append((h, w, batch_size))
|
||
|
self.img_batch_pairs = img_batch_pairs
|
||
|
self.shuffle = True
|
||
|
else:
|
||
|
self.img_batch_pairs = [(base_im_h , base_im_w , base_batch_size)]
|
||
|
|
||
|
self.img_indices = img_indices
|
||
|
self.n_samples_per_replica = num_samples_per_replica
|
||
|
self.epoch = 0
|
||
|
self.rank = rank
|
||
|
self.num_replicas = num_replicas
|
||
|
|
||
|
self.batch_list = []
|
||
|
self.current = 0
|
||
|
indices_rank_i = self.img_indices[self.rank : len(self.img_indices) : self.num_replicas]
|
||
|
while self.current < self.n_samples_per_replica:
|
||
|
curr_h, curr_w, curr_bsz = random.choice(self.img_batch_pairs)
|
||
|
|
||
|
end_index = min(self.current + curr_bsz, self.n_samples_per_replica)
|
||
|
|
||
|
batch_ids = indices_rank_i[self.current:end_index]
|
||
|
n_batch_samples = len(batch_ids)
|
||
|
if n_batch_samples != curr_bsz:
|
||
|
batch_ids += indices_rank_i[:(curr_bsz - n_batch_samples)]
|
||
|
self.current += curr_bsz
|
||
|
|
||
|
if len(batch_ids) > 0:
|
||
|
batch = [curr_h, curr_w, len(batch_ids)]
|
||
|
self.batch_list.append(batch)
|
||
|
self.length = len(self.batch_list)
|
||
|
|
||
|
def __iter__(self):
|
||
|
if self.shuffle:
|
||
|
random.seed(self.epoch)
|
||
|
random.shuffle(self.img_indices)
|
||
|
random.shuffle(self.img_batch_pairs)
|
||
|
indices_rank_i = self.img_indices[self.rank : len(self.img_indices) : self.num_replicas]
|
||
|
else:
|
||
|
indices_rank_i = self.img_indices[self.rank : len(self.img_indices) : self.num_replicas]
|
||
|
|
||
|
start_index = 0
|
||
|
for batch_tuple in self.batch_list:
|
||
|
curr_h, curr_w, curr_bsz = batch_tuple
|
||
|
end_index = min(start_index + curr_bsz, self.n_samples_per_replica)
|
||
|
batch_ids = indices_rank_i[start_index:end_index]
|
||
|
n_batch_samples = len(batch_ids)
|
||
|
if n_batch_samples != curr_bsz:
|
||
|
batch_ids += indices_rank_i[:(curr_bsz - n_batch_samples)]
|
||
|
start_index += curr_bsz
|
||
|
|
||
|
if len(batch_ids) > 0:
|
||
|
batch = [(curr_h, curr_w, b_id) for b_id in batch_ids]
|
||
|
yield batch
|
||
|
|
||
|
def set_epoch(self, epoch: int):
|
||
|
self.epoch = epoch
|
||
|
|
||
|
def __len__(self):
|
||
|
return self.length
|
||
|
|